#include "elephants.h"
#pragma GCC optimize("O3")
#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using arr = array<int, 2>;
using arrr = array<int, 3>;
// Start = 100
constexpr int maxn = 1.5e5, start_size = 100, num_groups = maxn / start_size + 1;
int n, l;
struct Group {
int n;
vector <int> pos;
vector <arr> pref;
void calc() // O(n log n)
{
assert(n == (int)pos.size());
pref.resize(n + 1);
pref[n] = {0, 0};
sort(pos.begin(), pos.end());
for (int p = n - 1; p >= 0; p--)
{
int ind = upper_bound(pos.begin(), pos.end(), pos[p] + l) - pos.begin();
pref[p] = {pref[ind][0] + 1, max(pos[p] + l, pref[ind][1])};
}
}
void insert(int p, bool up = false) // O(sqrt(n))
{
pos.emplace_back(p);
n++;
if (up) calc();
}
void erase(int p, bool up = false) // O(sqrt(n))
{
n--;
pos.erase(lower_bound(pos.begin(), pos.end(), p));
if (up) calc();
}
} ;
vector<Group> groups;
void split_group(int p)
{
Group ne = Group();
ne.pos = vector<int>(groups[p].pos.begin() + groups[p].n / 2, groups[p].pos.end());
// cout <<"aa\n";
// for (int i : ne.pos) cout << i << " ";
// cout << "\n";
groups[p].pos.resize(groups[p].n / 2);
groups[p].n /= 2;
groups[p].calc();
ne.n = ne.pos.size();
ne.calc();
groups.insert(groups.begin() + p + 1, ne);
}
void print_groups()
{
for (int a = 0; a < (int)groups.size(); a++)
{
cout << a << " " << groups[a].n << " " << groups[a].pos.size() << "\n";
for (int i : groups[a].pos) cout << i << "\t";
cout << "\n";
for (arr i : groups[a].pref) cout << i[0] << " " << i[1] << "\t";
cout << "\n";
}
cout << endl;
}
int get_total() // O(n / sqrt(n) log n)
{
int output = 0;
int last_length = -1;
for (int i = 0; i < (int)groups.size(); i++)
{
int pos = upper_bound(groups[i].pos.begin(), groups[i].pos.end(), last_length) - groups[i].pos.begin();
output += groups[i].pref[pos][0];
last_length = max(last_length, groups[i].pref[pos][1]);
}
return output;
}
int ind_to_pos[maxn] = { 0 };
void init(int N, int L, int X[]) // O(n / sqrt(n))
{
n = N, l = L;
for (int i = 0; i < n; i++) ind_to_pos[i] = X[i];
groups.resize((n - 1) / start_size + 1);
for (int y = 0; y <= n / start_size; y++)
{
for (int i = 0; i < start_size; i++)
{
if (y * start_size + i == n) {
y = 2e9;
break;
}
groups[y].insert(X[y * start_size + i]);
}
}
// print_groups();
int y;
for (y = 0; y < (int)groups.size(); y++)
{
groups[y].calc();
}
assert((int)groups.size() == y);
// print_groups();
}
int fnd_group(int p)
{
int l = 0, r = groups.size() - 1, mid;
while (l != r)
{
mid = (l + r) >> 1;
if (groups[mid].pos.back() < p) l = mid + 1;
else r = mid;
}
return l;
}
int q = 0;
int update(const int i, int y)
{
// cout << "NEW QUERY\n";
int u = ind_to_pos[i]; // Now position
int j = fnd_group(u);
groups[j].erase(u, true);
if (groups[j].n == 0)
{
groups.erase(groups.begin() + j);
}
ind_to_pos[i] = y;
j = fnd_group(y);
groups[j].insert(y, true);
if (groups[j].n >= start_size * 1.5) split_group(j);
// print_groups();
// q++;
// if (q % 1000 == 0)
// {
// for (int x = 0; x < groups.size(); x++)
// {
// cout << groups[x].n << " ";
// }
// cout << "\n";
// }
return get_total();
}
/*
g++ -o $PROBLEM grader.cpp $PROBLEM.cpp -fsanitize="address","undefined" -D_GLIBCXX_DEBUG -D_GLIBCXX_DEBUG_PEDANTIC -Wall -g3 -O2 && ./$PROBLEM
g++ -o $PROBLEM grader.cpp $PROBLEM.cpp -Wall -g3 && ./$PROBLEM
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
340 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
0 ms |
340 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
340 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
0 ms |
340 KB |
Output is correct |
4 |
Correct |
1 ms |
340 KB |
Output is correct |
5 |
Correct |
1 ms |
340 KB |
Output is correct |
6 |
Correct |
0 ms |
340 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
340 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
0 ms |
340 KB |
Output is correct |
4 |
Correct |
1 ms |
340 KB |
Output is correct |
5 |
Correct |
1 ms |
340 KB |
Output is correct |
6 |
Correct |
0 ms |
340 KB |
Output is correct |
7 |
Correct |
341 ms |
1228 KB |
Output is correct |
8 |
Correct |
415 ms |
2364 KB |
Output is correct |
9 |
Correct |
421 ms |
3744 KB |
Output is correct |
10 |
Correct |
370 ms |
3868 KB |
Output is correct |
11 |
Correct |
366 ms |
3828 KB |
Output is correct |
12 |
Correct |
582 ms |
3888 KB |
Output is correct |
13 |
Correct |
395 ms |
3692 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
340 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
0 ms |
340 KB |
Output is correct |
4 |
Correct |
1 ms |
340 KB |
Output is correct |
5 |
Correct |
1 ms |
340 KB |
Output is correct |
6 |
Correct |
0 ms |
340 KB |
Output is correct |
7 |
Correct |
341 ms |
1228 KB |
Output is correct |
8 |
Correct |
415 ms |
2364 KB |
Output is correct |
9 |
Correct |
421 ms |
3744 KB |
Output is correct |
10 |
Correct |
370 ms |
3868 KB |
Output is correct |
11 |
Correct |
366 ms |
3828 KB |
Output is correct |
12 |
Correct |
582 ms |
3888 KB |
Output is correct |
13 |
Correct |
395 ms |
3692 KB |
Output is correct |
14 |
Correct |
322 ms |
3300 KB |
Output is correct |
15 |
Correct |
503 ms |
3252 KB |
Output is correct |
16 |
Correct |
819 ms |
4468 KB |
Output is correct |
17 |
Correct |
991 ms |
5516 KB |
Output is correct |
18 |
Correct |
1067 ms |
5036 KB |
Output is correct |
19 |
Correct |
765 ms |
5064 KB |
Output is correct |
20 |
Correct |
1055 ms |
5632 KB |
Output is correct |
21 |
Correct |
1051 ms |
5236 KB |
Output is correct |
22 |
Correct |
728 ms |
5036 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
0 ms |
340 KB |
Output is correct |
2 |
Correct |
0 ms |
340 KB |
Output is correct |
3 |
Correct |
0 ms |
340 KB |
Output is correct |
4 |
Correct |
1 ms |
340 KB |
Output is correct |
5 |
Correct |
1 ms |
340 KB |
Output is correct |
6 |
Correct |
0 ms |
340 KB |
Output is correct |
7 |
Correct |
341 ms |
1228 KB |
Output is correct |
8 |
Correct |
415 ms |
2364 KB |
Output is correct |
9 |
Correct |
421 ms |
3744 KB |
Output is correct |
10 |
Correct |
370 ms |
3868 KB |
Output is correct |
11 |
Correct |
366 ms |
3828 KB |
Output is correct |
12 |
Correct |
582 ms |
3888 KB |
Output is correct |
13 |
Correct |
395 ms |
3692 KB |
Output is correct |
14 |
Correct |
322 ms |
3300 KB |
Output is correct |
15 |
Correct |
503 ms |
3252 KB |
Output is correct |
16 |
Correct |
819 ms |
4468 KB |
Output is correct |
17 |
Correct |
991 ms |
5516 KB |
Output is correct |
18 |
Correct |
1067 ms |
5036 KB |
Output is correct |
19 |
Correct |
765 ms |
5064 KB |
Output is correct |
20 |
Correct |
1055 ms |
5632 KB |
Output is correct |
21 |
Correct |
1051 ms |
5236 KB |
Output is correct |
22 |
Correct |
728 ms |
5036 KB |
Output is correct |
23 |
Correct |
3688 ms |
11288 KB |
Output is correct |
24 |
Correct |
4035 ms |
11204 KB |
Output is correct |
25 |
Correct |
3221 ms |
10876 KB |
Output is correct |
26 |
Correct |
3684 ms |
12012 KB |
Output is correct |
27 |
Correct |
4030 ms |
10724 KB |
Output is correct |
28 |
Correct |
647 ms |
5164 KB |
Output is correct |
29 |
Correct |
605 ms |
5340 KB |
Output is correct |
30 |
Correct |
694 ms |
5324 KB |
Output is correct |
31 |
Correct |
581 ms |
5128 KB |
Output is correct |
32 |
Correct |
3028 ms |
11444 KB |
Output is correct |
33 |
Correct |
3030 ms |
10772 KB |
Output is correct |
34 |
Correct |
2997 ms |
11776 KB |
Output is correct |
35 |
Correct |
3190 ms |
10508 KB |
Output is correct |
36 |
Correct |
2506 ms |
9752 KB |
Output is correct |
37 |
Correct |
4154 ms |
12444 KB |
Output is correct |
38 |
Correct |
2847 ms |
10660 KB |
Output is correct |
39 |
Correct |
2981 ms |
10528 KB |
Output is correct |
40 |
Correct |
3122 ms |
10684 KB |
Output is correct |
41 |
Correct |
4260 ms |
11408 KB |
Output is correct |
42 |
Correct |
4212 ms |
11468 KB |
Output is correct |