Submission #768590

# Submission time Handle Problem Language Result Execution time Memory
768590 2023-06-28T09:29:42 Z danikoynov Two Currencies (JOI23_currencies) C++14
100 / 100
2037 ms 84696 KB
#include<bits/stdc++.h>
#define endl '\n'

using namespace std;
typedef long long ll;

void speed()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
}

const ll maxn = 1e5 + 10;

struct checkpoll
{
    ll p, c;

    void read()
    {
        cin >> p >> c;
    }

    bool operator < (const checkpoll &t) const
    {
        return c < t.c;
    }
} cp[maxn];

struct citizen
{
    ll s, t, x, y;

    void read()
    {
        cin >> s >> t >> x >> y;
    }
} ct[maxn];

ll n, m, q;
vector < ll > adj[maxn];
pair < ll, ll > road[maxn];
void input()
{
    cin >> n >> m >> q;
    for (ll i = 1; i < n; i ++)
    {
        ll a, b;
        cin >> a >> b;
        road[i] = {a, b};
        adj[a].push_back(b);
        adj[b].push_back(a);
    }
    for (ll i = 1; i <= m; i ++)
        cp[i].read();
    for (ll i = 1; i <= q; i ++)
        ct[i].read();
}

ll tin[maxn], tout[maxn], timer, occ[2 * maxn];
ll par[maxn], depth[maxn];
void euler_tour(ll v = 1, ll p = 0)
{
    occ[++ timer] = v;
    tin[v] = timer;
    for (ll u : adj[v])
    {
        if (u == p)
            continue;
        depth[u] = depth[v] + 1;
        par[u] = v;
        euler_tour(u, v);
        occ[++ timer] = v;
    }
    tout[v] = timer;
}

const ll maxlog = 20;
struct sparse_table
{
    ll lg[2 * maxn], dp[maxlog][2 * maxn];

    void build_sparse_table()
    {
        for (ll i = 1; i <= timer; i ++)
        {
            lg[i] = lg[i / 2] + 1;
            dp[0][i] = occ[i];
        }

        for (ll j = 1; j < lg[timer]; j ++)
        {
            for (ll i = 1; i <= timer - (1 << j) + 1; i ++)
            {
                dp[j][i] = dp[j - 1][i + (1 << (j - 1))];
                if (depth[dp[j - 1][i]] < depth[dp[j][i]])
                    dp[j][i] = dp[j - 1][i];
            }
        }

        /**cout << "---------------" << endl;
        for (ll j = 0; j < lg[timer]; j ++, cout << endl)
            for (ll i = 1; i <= timer; i ++)
            cout << dp[j][i] << " ";*/
    }

    ll lca_query(ll v, ll u)
    {
        ll l = tin[v], r = tin[u];
        if (l > r)
            swap(l, r);
        ll len = lg[r - l + 1] - 1, lca = dp[len][r - (1 << len) + 1];
        ///cout << "lca " << v << " " << u << " " << l << " " << r << endl;
        if (depth[dp[len][l]] < depth[lca])
            lca = dp[len][l];
        return lca;
    }
};

sparse_table st;

struct fenwick
{
    ll fen[2 * maxn];

    void add(ll pos, ll val)
    {
        for (ll i = pos; i <= timer; i += (i & -i))
            fen[i] += val;
    }

    ll sum(ll pos)
    {
        ll s = 0;
        for (ll i = pos; i > 0; i -= (i & -i))
            s += fen[i];
        return s;
    }

    void range_update(ll left, ll right, ll val)
    {
        add(left, val);
        add(right + 1, - val);
    }

    ll query(ll pos)
    {
        return sum(pos);
    }
};


fenwick gold, silver;
pair < ll, ll > range[maxn];
vector < ll > upd[maxn];

ll binary_position(ll val)
{
    ll left = 1, right = m;
    while(left <= right)
    {
        ll mid = left + (right - left) / 2;
        if (cp[mid].c <= val)
            left = mid + 1;
        else
            right = mid - 1;
    }
    return right;
}

ll ans[maxn];
pair < ll, ll > avab[maxn];
void parallel_binary_search()
{
    for (ll i = 1; i <= q; i ++)
    {
        range[i] = {0, 1e9 + 10};
    }

    for (ll i = 1; i < n; i ++)
    {
        if (depth[road[i].first] < depth[road[i].second])
            swap(road[i].first, road[i].second);
    }
    /**for (ll i = 1; i <= m; i ++)

    {
        cout << road[cp[i].p].first << endl;
    }*/
    sort(cp + 1, cp + m + 1);
    while(true)
    {
        bool done = true;
        for (ll i = 0; i <= m; i ++)
            upd[i].clear();

        for (ll i = 1; i <= q; i ++)
        {
            if (range[i].first <= range[i].second)
            {
                done = false;
                ll mid = (range[i].first + (range[i].second - range[i].first) / 2);
                ll pos = binary_position(mid);
                upd[pos].push_back(i);
            }
        }
        if (done)
            break;

        //for (ll i = 1; i <= m; i ++)
        //  gold.range_update(tin[cp[i].p], tout[cp[i].p], 1);
        /**cout << "-------------" << endl;
        for (ll i = 1; i <= m; i ++)
            cout << range[i].first << " " << range[i].second << endl;*/
        for (ll i = 0; i <= m; i ++)
        {
            if (i != 0)
            {

                silver.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], cp[i].c);
            }

            for (ll idx : upd[i])
            {
                ll lca = st.lca_query(ct[idx].s, ct[idx].t);
                ll val = silver.query(tin[ct[idx].s]) + silver.query(tin[ct[idx].t]);
                val = val - 2 * silver.query(tin[lca]);
                ///co
                ///cout << idx << " : " << val << " -- " << lca << endl;
                /**if (idx == 6)
                {
                    cout << ct[idx].s << " " << ct[idx].t << " " << val << " " << lca << " " << i << endl;
                }*/
                ll mid = (range[idx].first + (range[idx].second - range[idx].first) / 2);
                if (val > ct[idx].y)
                    range[idx].second = mid - 1;
                else
                    range[idx].first = mid + 1;
            }
        }

        for (ll i = 1; i <= m; i ++)
            silver.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], -cp[i].c);
    }


        for (ll i = 0; i <= m; i ++)
        upd[i].clear();
    for (ll i = 1; i <= q; i ++)
    {
        ll pos = binary_position(range[i].first);
        upd[pos].push_back(i);
    }


    for (ll i = 1; i <= m; i ++)
    {
        gold.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], 1);

    }

    for (ll i = 0; i <= m; i ++)
    {
        if (i != 0)
        {
            silver.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], cp[i].c);
            gold.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], -1);
        }
        /**cout << "step" << endl;
        cout << i << endl;
        for (ll j = 1; j <= n; j ++)
            cout << gold.query(tin[j]) << " ";
            cout << endl;
        cout << "order" << endl;
        for (ll j = 1; j <= timer; j ++)
            cout << occ[j] << " ";
        cout << endl;*/
        for (ll idx : upd[i])
        {
            ll lca = st.lca_query(ct[idx].s, ct[idx].t);

            ll val = silver.query(tin[ct[idx].s]) + silver.query(tin[ct[idx].t]);
            val = val - 2 * silver.query(tin[lca]);

            ll min_gold = gold.query(tin[ct[idx].s]) + gold.query(tin[ct[idx].t]);
            ///cout << "gold " << min_gold << " " << gold.query(tinendl;
            min_gold = min_gold - 2 * gold.query(tin[lca]);


            //cout << idx << " : " << min_gold << " " << i << " lca " << lca << endl;
            avab[idx].second = min_gold;
        }
    }


        for (ll i = 1; i <= m; i ++)
            silver.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], -cp[i].c);


    for (ll i = 0; i <= m; i ++)
        upd[i].clear();
    for (ll i = 1; i <= q; i ++)
    {
        ll pos = binary_position(range[i].second);
        upd[pos].push_back(i);
    }


    for (ll i = 1; i <= m; i ++)
    {
        gold.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], 1);

    }

    for (ll i = 0; i <= m; i ++)
    {
        if (i != 0)
        {
            silver.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], cp[i].c);
            gold.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], -1);
        }
        /**cout << "step" << endl;
        cout << i << endl;
        for (ll j = 1; j <= n; j ++)
            cout << gold.query(tin[j]) << " ";
            cout << endl;
        cout << "order" << endl;
        for (ll j = 1; j <= timer; j ++)
            cout << occ[j] << " ";
        cout << endl;*/
        for (ll idx : upd[i])
        {
            ll lca = st.lca_query(ct[idx].s, ct[idx].t);

            ll val = silver.query(tin[ct[idx].s]) + silver.query(tin[ct[idx].t]);
            val = val - 2 * silver.query(tin[lca]);

            ll min_gold = gold.query(tin[ct[idx].s]) + gold.query(tin[ct[idx].t]);
            ///cout << "gold " << min_gold << " " << gold.query(tinendl;
            min_gold = min_gold - 2 * gold.query(tin[lca]);


            //cout << idx << " : " << min_gold << " " << i << " lca " << lca << endl;
            ll to_fill = min_gold - avab[idx].second, cnt = range[idx].first;
            ll cn = min(to_fill, (ct[idx].y - val) / cnt);
            ll left_gold = ct[idx].x - min_gold + cn;
            if (left_gold < 0)
                left_gold = - 1;
            ans[idx] = left_gold;
        }
    }


        for (ll i = 1; i <= m; i ++)
            silver.range_update(tin[road[cp[i].p].first], tout[road[cp[i].p].first], -cp[i].c);

    for (ll i = 1; i <= q; i ++)
        cout << ans[i] << endl;
}
void solve()
{
    input();
    euler_tour(1, 0);
    st.build_sparse_table();
    parallel_binary_search();
}

int main()
{
    speed();
    solve();
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 5076 KB Output is correct
2 Correct 2 ms 5076 KB Output is correct
3 Correct 2 ms 5076 KB Output is correct
4 Correct 2 ms 5076 KB Output is correct
5 Correct 11 ms 5972 KB Output is correct
6 Correct 14 ms 6256 KB Output is correct
7 Correct 12 ms 5952 KB Output is correct
8 Correct 16 ms 6260 KB Output is correct
9 Correct 15 ms 6264 KB Output is correct
10 Correct 16 ms 6256 KB Output is correct
11 Correct 16 ms 6272 KB Output is correct
12 Correct 16 ms 6268 KB Output is correct
13 Correct 16 ms 6356 KB Output is correct
14 Correct 16 ms 6336 KB Output is correct
15 Correct 16 ms 6352 KB Output is correct
16 Correct 16 ms 6360 KB Output is correct
17 Correct 19 ms 6272 KB Output is correct
18 Correct 16 ms 6364 KB Output is correct
19 Correct 14 ms 6356 KB Output is correct
20 Correct 16 ms 6356 KB Output is correct
21 Correct 15 ms 6348 KB Output is correct
22 Correct 14 ms 6356 KB Output is correct
23 Correct 14 ms 6280 KB Output is correct
24 Correct 14 ms 6356 KB Output is correct
25 Correct 14 ms 6348 KB Output is correct
26 Correct 12 ms 6352 KB Output is correct
27 Correct 11 ms 6336 KB Output is correct
28 Correct 12 ms 6356 KB Output is correct
29 Correct 11 ms 6240 KB Output is correct
30 Correct 12 ms 6052 KB Output is correct
31 Correct 11 ms 6100 KB Output is correct
32 Correct 11 ms 6100 KB Output is correct
33 Correct 17 ms 6416 KB Output is correct
34 Correct 16 ms 6384 KB Output is correct
35 Correct 16 ms 6464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 5076 KB Output is correct
2 Correct 11 ms 5960 KB Output is correct
3 Correct 12 ms 6076 KB Output is correct
4 Correct 16 ms 6132 KB Output is correct
5 Correct 855 ms 57220 KB Output is correct
6 Correct 817 ms 46672 KB Output is correct
7 Correct 807 ms 52380 KB Output is correct
8 Correct 628 ms 51360 KB Output is correct
9 Correct 629 ms 50636 KB Output is correct
10 Correct 1014 ms 61616 KB Output is correct
11 Correct 1008 ms 61612 KB Output is correct
12 Correct 987 ms 61628 KB Output is correct
13 Correct 1026 ms 61692 KB Output is correct
14 Correct 1056 ms 61628 KB Output is correct
15 Correct 1072 ms 67564 KB Output is correct
16 Correct 1041 ms 67964 KB Output is correct
17 Correct 1032 ms 67212 KB Output is correct
18 Correct 1140 ms 61496 KB Output is correct
19 Correct 1081 ms 61496 KB Output is correct
20 Correct 1004 ms 61588 KB Output is correct
21 Correct 939 ms 60896 KB Output is correct
22 Correct 984 ms 61292 KB Output is correct
23 Correct 966 ms 61272 KB Output is correct
24 Correct 977 ms 61284 KB Output is correct
25 Correct 741 ms 62060 KB Output is correct
26 Correct 760 ms 62012 KB Output is correct
27 Correct 689 ms 62004 KB Output is correct
28 Correct 695 ms 61376 KB Output is correct
29 Correct 672 ms 61420 KB Output is correct
30 Correct 801 ms 61620 KB Output is correct
31 Correct 747 ms 61620 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5120 KB Output is correct
2 Correct 16 ms 6356 KB Output is correct
3 Correct 17 ms 6356 KB Output is correct
4 Correct 16 ms 6356 KB Output is correct
5 Correct 1156 ms 70796 KB Output is correct
6 Correct 927 ms 69684 KB Output is correct
7 Correct 1202 ms 58084 KB Output is correct
8 Correct 1926 ms 84604 KB Output is correct
9 Correct 1997 ms 84616 KB Output is correct
10 Correct 2037 ms 84580 KB Output is correct
11 Correct 1548 ms 84696 KB Output is correct
12 Correct 1557 ms 84520 KB Output is correct
13 Correct 1570 ms 84696 KB Output is correct
14 Correct 1390 ms 83976 KB Output is correct
15 Correct 1263 ms 84160 KB Output is correct
16 Correct 1483 ms 84416 KB Output is correct
17 Correct 1376 ms 84380 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 5076 KB Output is correct
2 Correct 2 ms 5076 KB Output is correct
3 Correct 2 ms 5076 KB Output is correct
4 Correct 2 ms 5076 KB Output is correct
5 Correct 11 ms 5972 KB Output is correct
6 Correct 14 ms 6256 KB Output is correct
7 Correct 12 ms 5952 KB Output is correct
8 Correct 16 ms 6260 KB Output is correct
9 Correct 15 ms 6264 KB Output is correct
10 Correct 16 ms 6256 KB Output is correct
11 Correct 16 ms 6272 KB Output is correct
12 Correct 16 ms 6268 KB Output is correct
13 Correct 16 ms 6356 KB Output is correct
14 Correct 16 ms 6336 KB Output is correct
15 Correct 16 ms 6352 KB Output is correct
16 Correct 16 ms 6360 KB Output is correct
17 Correct 19 ms 6272 KB Output is correct
18 Correct 16 ms 6364 KB Output is correct
19 Correct 14 ms 6356 KB Output is correct
20 Correct 16 ms 6356 KB Output is correct
21 Correct 15 ms 6348 KB Output is correct
22 Correct 14 ms 6356 KB Output is correct
23 Correct 14 ms 6280 KB Output is correct
24 Correct 14 ms 6356 KB Output is correct
25 Correct 14 ms 6348 KB Output is correct
26 Correct 12 ms 6352 KB Output is correct
27 Correct 11 ms 6336 KB Output is correct
28 Correct 12 ms 6356 KB Output is correct
29 Correct 11 ms 6240 KB Output is correct
30 Correct 12 ms 6052 KB Output is correct
31 Correct 11 ms 6100 KB Output is correct
32 Correct 11 ms 6100 KB Output is correct
33 Correct 17 ms 6416 KB Output is correct
34 Correct 16 ms 6384 KB Output is correct
35 Correct 16 ms 6464 KB Output is correct
36 Correct 2 ms 5076 KB Output is correct
37 Correct 11 ms 5960 KB Output is correct
38 Correct 12 ms 6076 KB Output is correct
39 Correct 16 ms 6132 KB Output is correct
40 Correct 855 ms 57220 KB Output is correct
41 Correct 817 ms 46672 KB Output is correct
42 Correct 807 ms 52380 KB Output is correct
43 Correct 628 ms 51360 KB Output is correct
44 Correct 629 ms 50636 KB Output is correct
45 Correct 1014 ms 61616 KB Output is correct
46 Correct 1008 ms 61612 KB Output is correct
47 Correct 987 ms 61628 KB Output is correct
48 Correct 1026 ms 61692 KB Output is correct
49 Correct 1056 ms 61628 KB Output is correct
50 Correct 1072 ms 67564 KB Output is correct
51 Correct 1041 ms 67964 KB Output is correct
52 Correct 1032 ms 67212 KB Output is correct
53 Correct 1140 ms 61496 KB Output is correct
54 Correct 1081 ms 61496 KB Output is correct
55 Correct 1004 ms 61588 KB Output is correct
56 Correct 939 ms 60896 KB Output is correct
57 Correct 984 ms 61292 KB Output is correct
58 Correct 966 ms 61272 KB Output is correct
59 Correct 977 ms 61284 KB Output is correct
60 Correct 741 ms 62060 KB Output is correct
61 Correct 760 ms 62012 KB Output is correct
62 Correct 689 ms 62004 KB Output is correct
63 Correct 695 ms 61376 KB Output is correct
64 Correct 672 ms 61420 KB Output is correct
65 Correct 801 ms 61620 KB Output is correct
66 Correct 747 ms 61620 KB Output is correct
67 Correct 3 ms 5120 KB Output is correct
68 Correct 16 ms 6356 KB Output is correct
69 Correct 17 ms 6356 KB Output is correct
70 Correct 16 ms 6356 KB Output is correct
71 Correct 1156 ms 70796 KB Output is correct
72 Correct 927 ms 69684 KB Output is correct
73 Correct 1202 ms 58084 KB Output is correct
74 Correct 1926 ms 84604 KB Output is correct
75 Correct 1997 ms 84616 KB Output is correct
76 Correct 2037 ms 84580 KB Output is correct
77 Correct 1548 ms 84696 KB Output is correct
78 Correct 1557 ms 84520 KB Output is correct
79 Correct 1570 ms 84696 KB Output is correct
80 Correct 1390 ms 83976 KB Output is correct
81 Correct 1263 ms 84160 KB Output is correct
82 Correct 1483 ms 84416 KB Output is correct
83 Correct 1376 ms 84380 KB Output is correct
84 Correct 1153 ms 60312 KB Output is correct
85 Correct 984 ms 50296 KB Output is correct
86 Correct 882 ms 49480 KB Output is correct
87 Correct 1770 ms 77960 KB Output is correct
88 Correct 1808 ms 78008 KB Output is correct
89 Correct 1795 ms 78268 KB Output is correct
90 Correct 1700 ms 78236 KB Output is correct
91 Correct 1783 ms 78136 KB Output is correct
92 Correct 2037 ms 82148 KB Output is correct
93 Correct 1889 ms 83580 KB Output is correct
94 Correct 1771 ms 78088 KB Output is correct
95 Correct 1808 ms 78420 KB Output is correct
96 Correct 1755 ms 78028 KB Output is correct
97 Correct 1716 ms 78128 KB Output is correct
98 Correct 1578 ms 78220 KB Output is correct
99 Correct 1599 ms 77828 KB Output is correct
100 Correct 1572 ms 78220 KB Output is correct
101 Correct 1540 ms 78592 KB Output is correct
102 Correct 1266 ms 78548 KB Output is correct
103 Correct 1248 ms 78712 KB Output is correct
104 Correct 1261 ms 78368 KB Output is correct
105 Correct 856 ms 74932 KB Output is correct
106 Correct 775 ms 76632 KB Output is correct
107 Correct 929 ms 75396 KB Output is correct
108 Correct 907 ms 74728 KB Output is correct