Submission #760897

# Submission time Handle Problem Language Result Execution time Memory
760897 2023-06-18T20:37:30 Z Valera_Grinenko Selling RNA Strands (JOI16_selling_rna) C++17
100 / 100
1355 ms 244336 KB
#pragma GCC optimize("Ofast", "unroll-loops")
//#pragma GCC target("sse", "sse2", "sse3", "ssse3", "sse4")

#ifdef __APPLE__

#include <iostream>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <cstdint>
#include <cstring>
#include <string>
#include <cstdlib>
#include <vector>
#include <bitset>
#include <map>
#include <queue>
#include <ctime>
#include <stack>
#include <set>
#include <list>
#include <random>
#include <deque>
#include <functional>
#include <iomanip>
#include <sstream>
#include <fstream>
#include <complex>
#include <numeric>
#include <cassert>
#include <array>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <thread>

#else
#include <bits/stdc++.h>
#endif

#define all(a) a.begin(),a.end()
#define len(a) (int)(a.size())
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
#define fi first
#define se second

using namespace std;

typedef pair<int, int> pii;
typedef long long ll;
typedef long double ld;

template<typename T>
bool umin(T &a, T b) {
    if (b < a) {
        a = b;
        return true;
    }
    return false;
}

template<typename T>
bool umax(T &a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    return false;
}

#if __APPLE__
#define D for (bool _FLAG = true; _FLAG; _FLAG = false)
#define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl

template<class ...Ts>
auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); }

#else
#define D while (false)
#define LOG(...)
#endif

//mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());

namespace atcoder {

    namespace internal {

        std::vector<int> sa_naive(const std::vector<int>& s) {
            int n = int(s.size());
            std::vector<int> sa(n);
            std::iota(sa.begin(), sa.end(), 0);
            std::sort(sa.begin(), sa.end(), [&](int l, int r) {
                if (l == r) return false;
                while (l < n && r < n) {
                    if (s[l] != s[r]) return s[l] < s[r];
                    l++;
                    r++;
                }
                return l == n;
            });
            return sa;
        }

        std::vector<int> sa_doubling(const std::vector<int>& s) {
            int n = int(s.size());
            std::vector<int> sa(n), rnk = s, tmp(n);
            std::iota(sa.begin(), sa.end(), 0);
            for (int k = 1; k < n; k *= 2) {
                auto cmp = [&](int x, int y) {
                    if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
                    int rx = x + k < n ? rnk[x + k] : -1;
                    int ry = y + k < n ? rnk[y + k] : -1;
                    return rx < ry;
                };
                std::sort(sa.begin(), sa.end(), cmp);
                tmp[sa[0]] = 0;
                for (int i = 1; i < n; i++) {
                    tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
                }
                std::swap(tmp, rnk);
            }
            return sa;
        }

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
        template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
        std::vector<int> sa_is(const std::vector<int>& s, int upper) {
            int n = int(s.size());
            if (n == 0) return {};
            if (n == 1) return {0};
            if (n == 2) {
                if (s[0] < s[1]) {
                    return {0, 1};
                } else {
                    return {1, 0};
                }
            }
            if (n < THRESHOLD_NAIVE) {
                return sa_naive(s);
            }
            if (n < THRESHOLD_DOUBLING) {
                return sa_doubling(s);
            }

            std::vector<int> sa(n);
            std::vector<bool> ls(n);
            for (int i = n - 2; i >= 0; i--) {
                ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
            }
            std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
            for (int i = 0; i < n; i++) {
                if (!ls[i]) {
                    sum_s[s[i]]++;
                } else {
                    sum_l[s[i] + 1]++;
                }
            }
            for (int i = 0; i <= upper; i++) {
                sum_s[i] += sum_l[i];
                if (i < upper) sum_l[i + 1] += sum_s[i];
            }

            auto induce = [&](const std::vector<int>& lms) {
                std::fill(sa.begin(), sa.end(), -1);
                std::vector<int> buf(upper + 1);
                std::copy(sum_s.begin(), sum_s.end(), buf.begin());
                for (auto d : lms) {
                    if (d == n) continue;
                    sa[buf[s[d]]++] = d;
                }
                std::copy(sum_l.begin(), sum_l.end(), buf.begin());
                sa[buf[s[n - 1]]++] = n - 1;
                for (int i = 0; i < n; i++) {
                    int v = sa[i];
                    if (v >= 1 && !ls[v - 1]) {
                        sa[buf[s[v - 1]]++] = v - 1;
                    }
                }
                std::copy(sum_l.begin(), sum_l.end(), buf.begin());
                for (int i = n - 1; i >= 0; i--) {
                    int v = sa[i];
                    if (v >= 1 && ls[v - 1]) {
                        sa[--buf[s[v - 1] + 1]] = v - 1;
                    }
                }
            };

            std::vector<int> lms_map(n + 1, -1);
            int m = 0;
            for (int i = 1; i < n; i++) {
                if (!ls[i - 1] && ls[i]) {
                    lms_map[i] = m++;
                }
            }
            std::vector<int> lms;
            lms.reserve(m);
            for (int i = 1; i < n; i++) {
                if (!ls[i - 1] && ls[i]) {
                    lms.push_back(i);
                }
            }

            induce(lms);

            if (m) {
                std::vector<int> sorted_lms;
                sorted_lms.reserve(m);
                for (int v : sa) {
                    if (lms_map[v] != -1) sorted_lms.push_back(v);
                }
                std::vector<int> rec_s(m);
                int rec_upper = 0;
                rec_s[lms_map[sorted_lms[0]]] = 0;
                for (int i = 1; i < m; i++) {
                    int l = sorted_lms[i - 1], r = sorted_lms[i];
                    int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
                    int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
                    bool same = true;
                    if (end_l - l != end_r - r) {
                        same = false;
                    } else {
                        while (l < end_l) {
                            if (s[l] != s[r]) {
                                break;
                            }
                            l++;
                            r++;
                        }
                        if (l == n || s[l] != s[r]) same = false;
                    }
                    if (!same) rec_upper++;
                    rec_s[lms_map[sorted_lms[i]]] = rec_upper;
                }

                auto rec_sa =
                        sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

                for (int i = 0; i < m; i++) {
                    sorted_lms[i] = lms[rec_sa[i]];
                }
                induce(sorted_lms);
            }
            return sa;
        }

    }  // namespace internal

    std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
        assert(0 <= upper);
        for (int d : s) {
            assert(0 <= d && d <= upper);
        }
        auto sa = internal::sa_is(s, upper);
        return sa;
    }

    template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
        int n = int(s.size());
        std::vector<int> idx(n);
        iota(idx.begin(), idx.end(), 0);
        sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
        std::vector<int> s2(n);
        int now = 0;
        for (int i = 0; i < n; i++) {
            if (i && s[idx[i - 1]] != s[idx[i]]) now++;
            s2[idx[i]] = now;
        }
        return internal::sa_is(s2, now);
    }

    std::vector<int> suffix_array(const std::string& s) {
        int n = int(s.size());
        std::vector<int> s2(n);
        for (int i = 0; i < n; i++) {
            s2[i] = s[i];
        }
        return internal::sa_is(s2, 255);
    }

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
    template <class T>
    std::vector<int> lcp_array(const std::vector<T>& s,
                               const std::vector<int>& sa) {
        int n = int(s.size());
        assert(n >= 1);
        std::vector<int> rnk(n);
        for (int i = 0; i < n; i++) {
            rnk[sa[i]] = i;
        }
        std::vector<int> lcp(n - 1);
        int h = 0;
        for (int i = 0; i < n; i++) {
            if (h > 0) h--;
            if (rnk[i] == 0) continue;
            int j = sa[rnk[i] - 1];
            for (; j + h < n && i + h < n; h++) {
                if (s[j + h] != s[i + h]) break;
            }
            lcp[rnk[i] - 1] = h;
        }
        return lcp;
    }

    std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
        int n = int(s.size());
        std::vector<int> s2(n);
        for (int i = 0; i < n; i++) {
            s2[i] = s[i];
        }
        return lcp_array(s2, sa);
    }

// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
    template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
        int n = int(s.size());
        if (n == 0) return {};
        std::vector<int> z(n);
        z[0] = 0;
        for (int i = 1, j = 0; i < n; i++) {
            int& k = z[i];
            k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
            while (i + k < n && s[k] == s[i + k]) k++;
            if (j + z[j] < i + z[i]) j = i;
        }
        z[0] = n;
        return z;
    }

    std::vector<int> z_algorithm(const std::string& s) {
        int n = int(s.size());
        std::vector<int> s2(n);
        for (int i = 0; i < n; i++) {
            s2[i] = s[i];
        }
        return z_algorithm(s2);
    }

}  // namespace atcoder

const int max_n_st = 2e6 * 5;

template<typename T>
struct fenw_sum {
    T sum[max_n_st];

    void _add(int point, T x) {
        for(; point < max_n_st; point += (point & -point)) sum[point] += x;
    }

    void add(int point, T x) {
        _add(point + 1, x);
    }

    T _get(int point) {
        T res = 0;
        for(; point > 0; point -= (point & -point)) res += sum[point];
        return res;
    }

    T get(int l, int r) {
        return _get(r + 1) - _get(l);
    }

};

const int max_len = 1e5 + 42;

vector<int> queries[max_len];

const int max_n = 1e5 + 42;

int L[max_n], R[max_n];

void solve() {
    int n, m;
    cin >> n >> m;
    string conc;
    vector<string> s(n), r(m), q(m);
    vector<int> st1(n), st2(m);
    vector<pair<int, int> > av;
    for(int i = 0; i < n; i++) {
        cin >> s[i];
        conc += s[i];
        st1[i] = len(conc);
        conc += s[i];
        conc += '.';
        av.pb({len(s[i]), st1[i]});
    }
    sort(all(av)); reverse(all(av));
    vector<int> here(max_n_st, -1);
    for(int i = 0; i < m; i++) {
        cin >> r[i] >> q[i];
        st2[i] = len(conc);
        conc += q[i]; conc += r[i];
        conc += '.';
        queries[len(q[i])].pb(i);
    }
    auto sufarr = atcoder::suffix_array(conc);
    auto lcp = atcoder::lcp_array(conc, sufarr);
    reverse(all(lcp)); lcp.pb(0); reverse(all(lcp));
    fenw_sum<int> fwsum = {};
    vector<int> inv(len(conc));
    for(int i = 0; i < len(conc); i++) {
        inv[sufarr[i]] = i;
    }
    for(int i = 0; i < m; i++) here[inv[st2[i]]] = i;
    vector<pair<int, int> > st;
    st.pb({-1e9, -1});
    for(int i = 0; i < len(conc); i++) {
        if(i - 1 >= 0) {
            while(!st.empty() && st.back().fi >= lcp[i]) {
                st.pop_back();
            }
            st.push_back({lcp[i], i - 1});
        }
        st.pb({1e9, i});
        if(here[i] != -1) {
            auto pos = lower_bound(all(st), pair<int, int>{len(r[here[i]]) + len(q[here[i]]), -1}) - st.begin() - 1;
            L[here[i]] = st[pos].se + 1;
        }
//        cout << lcp[i] << ' ';
    }
//    for(auto& x : lcp) cout << x << ' ';
//    cout << '\n';
    st.clear();
    st.pb({-1e9, len(conc)});
    for(int i = len(conc) - 1; i >= 0; i--) {
        if(i + 1 < len(conc)) {
            while(!st.empty() && st.back().fi >= lcp[i + 1]) {
                st.pop_back();
            }
            st.push_back({lcp[i + 1], i + 1});
        }
        st.pb({1e9, i});
//        for(auto& x : st) cout << x.fi << ' ' << ' ' << x.se << ',';
//        cout << '\n';
        if(here[i] != -1) {
            auto pos = lower_bound(all(st), pair<int, int>{len(r[here[i]]) + len(q[here[i]]), -1}) - st.begin() - 1;
            R[here[i]] = st[pos].se - 1;
        }
    }
    for(int i = 0; i < n; i++) fwsum.add(inv[st1[i]], 1);
    vector<int> ans(m, -1);
    for(int len = 1; len < max_len; len++) {
        for(auto& x : av) fwsum.add(inv[x.se - (len - 1)], -1);
        while(!av.empty() && av.back().fi < len) av.pop_back();
        for(auto& x : av) fwsum.add(inv[x.se - len], 1);
        for(auto& curq : queries[len]) {
//            cout << curq << ' ' << L[curq] << ' ' << R[curq] << '\n';
            ans[curq] = fwsum.get(L[curq], R[curq]);
        }
    }
    for(int i = 0; i < m; i++) cout << ans[i] << '\n';
}

signed main() {
//   freopen("input.txt", "r", stdin);
//   freopen("output.txt", "w", stdout);

    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);

    int t = 1;

    //cin >> t;

    while (t--) solve();

}

/*
KIVI
*/
# Verdict Execution time Memory Grader output
1 Correct 33 ms 81012 KB Output is correct
2 Correct 37 ms 80976 KB Output is correct
3 Correct 31 ms 81016 KB Output is correct
4 Correct 31 ms 81020 KB Output is correct
5 Correct 37 ms 80932 KB Output is correct
6 Correct 31 ms 80948 KB Output is correct
7 Correct 30 ms 80900 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1336 ms 212760 KB Output is correct
2 Correct 1307 ms 213884 KB Output is correct
3 Correct 1231 ms 213452 KB Output is correct
4 Correct 1235 ms 214696 KB Output is correct
5 Correct 924 ms 166376 KB Output is correct
6 Correct 919 ms 167088 KB Output is correct
7 Correct 919 ms 204832 KB Output is correct
8 Correct 1355 ms 223612 KB Output is correct
9 Correct 1351 ms 222768 KB Output is correct
10 Correct 710 ms 178128 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 108 ms 97568 KB Output is correct
2 Correct 98 ms 94284 KB Output is correct
3 Correct 107 ms 96296 KB Output is correct
4 Correct 103 ms 95684 KB Output is correct
5 Correct 96 ms 93292 KB Output is correct
6 Correct 107 ms 96288 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 33 ms 81012 KB Output is correct
2 Correct 37 ms 80976 KB Output is correct
3 Correct 31 ms 81016 KB Output is correct
4 Correct 31 ms 81020 KB Output is correct
5 Correct 37 ms 80932 KB Output is correct
6 Correct 31 ms 80948 KB Output is correct
7 Correct 30 ms 80900 KB Output is correct
8 Correct 1336 ms 212760 KB Output is correct
9 Correct 1307 ms 213884 KB Output is correct
10 Correct 1231 ms 213452 KB Output is correct
11 Correct 1235 ms 214696 KB Output is correct
12 Correct 924 ms 166376 KB Output is correct
13 Correct 919 ms 167088 KB Output is correct
14 Correct 919 ms 204832 KB Output is correct
15 Correct 1355 ms 223612 KB Output is correct
16 Correct 1351 ms 222768 KB Output is correct
17 Correct 710 ms 178128 KB Output is correct
18 Correct 108 ms 97568 KB Output is correct
19 Correct 98 ms 94284 KB Output is correct
20 Correct 107 ms 96296 KB Output is correct
21 Correct 103 ms 95684 KB Output is correct
22 Correct 96 ms 93292 KB Output is correct
23 Correct 107 ms 96288 KB Output is correct
24 Correct 1260 ms 220780 KB Output is correct
25 Correct 1236 ms 222136 KB Output is correct
26 Correct 1256 ms 212808 KB Output is correct
27 Correct 1230 ms 215552 KB Output is correct
28 Correct 1338 ms 244336 KB Output is correct
29 Correct 839 ms 185780 KB Output is correct