#include <bits/stdc++.h>
using namespace std;
#define MAXM 510
#define MAXN 250010
long long n;
long long m;
char matrica[MAXM][MAXM];
vector<pair<long long,long long>> adj[MAXN];
long long dist[MAXN];
void dikstra(long long poc)
{
for (long long i=0;i<MAXN;i++) dist[i]=LLONG_MAX;
dist[poc]=0;
priority_queue<pair<long long,long long>,vector<pair<long long,long long>>,greater<pair<long long,long long>>> pq;
pq.push({0,poc});
while (pq.empty()==false)
{
long long node0=pq.top().second;
long long dist0=pq.top().first;
pq.pop();
if (dist0!=dist[node0]) continue;
long long s=adj[node0].size();
for (long long i=0;i<s;i++)
{
long long node=adj[node0][i].first;
long long distt=adj[node0][i].second;
if (dist0+distt<dist[node])
{
dist[node]=distt+dist0;
pq.push({dist[node],node});
}
}
}
}
int main()
{
cin>>n>>m;
for (long long i=1;i<=n;i++)
{
for (long long j=1;j<=m;j++) cin>>matrica[i][j];
}
for (long long i=1;i<=n;i++)
{
for (long long j=1;j<=m;j++)
{
if (i==1)
{
if (j==1)
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,0});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,1});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,3});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,0});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,2});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,3});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,1});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,2});
}
}
else if (j==m)
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,2});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,1});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,1});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,0});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,0});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,3});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,3});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,2});
}
}
else
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,0});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,2});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,1});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,3});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,1});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,0});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,2});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,0});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,3});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,1});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,3});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,2});
}
}
}
else if (i==n)
{
if (j==1)
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,0});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,3});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,3});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,2});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,2});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,1});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,1});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,0});
}
}
else if (j==m)
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,2});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,3});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,1});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,2});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,0});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,1});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,3});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,0});
}
}
else
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,0});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,2});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,3});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,3});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,1});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,2});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,2});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,0});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,1});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,1});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,3});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,0});
}
}
}
else
{
if (j==1)
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,0});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,3});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,1});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,3});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,2});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,0});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,2});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,1});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,3});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,1});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,0});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,2});
}
}
else if (j==m)
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,2});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,3});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,1});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,1});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,2});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,0});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,0});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,1});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,3});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,3});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,0});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,2});
}
}
else
{
if (matrica[i][j]=='E')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,0});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,2});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,3});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,1});
}
if (matrica[i][j]=='S')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,3});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,1});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,2});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,0});
}
if (matrica[i][j]=='W')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,2});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,0});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,1});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,3});
}
if (matrica[i][j]=='N')
{
adj[(i-1)*m+j].push_back({(i-1)*m+j+1,1});
adj[(i-1)*m+j].push_back({(i-1)*m+j-1,3});
adj[(i-1)*m+j].push_back({(i-1-1)*m+j,0});
adj[(i-1)*m+j].push_back({(i-1+1)*m+j,2});
}
}
}
}
}
dikstra(1);
if (dist[n*m]==LLONG_MAX) cout<<-1<<endl;
else cout<<dist[n*m]<<endl;
}
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
8148 KB |
Output is correct |
2 |
Correct |
4 ms |
8148 KB |
Output is correct |
3 |
Correct |
4 ms |
8148 KB |
Output is correct |
4 |
Correct |
4 ms |
8148 KB |
Output is correct |
5 |
Correct |
4 ms |
8148 KB |
Output is correct |
6 |
Correct |
3 ms |
8104 KB |
Output is correct |
7 |
Correct |
3 ms |
8020 KB |
Output is correct |
8 |
Correct |
4 ms |
8148 KB |
Output is correct |
9 |
Correct |
3 ms |
8148 KB |
Output is correct |
10 |
Correct |
4 ms |
8020 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
8148 KB |
Output is correct |
2 |
Correct |
4 ms |
8148 KB |
Output is correct |
3 |
Correct |
4 ms |
8148 KB |
Output is correct |
4 |
Correct |
4 ms |
8148 KB |
Output is correct |
5 |
Correct |
4 ms |
8148 KB |
Output is correct |
6 |
Correct |
3 ms |
8104 KB |
Output is correct |
7 |
Correct |
3 ms |
8020 KB |
Output is correct |
8 |
Correct |
4 ms |
8148 KB |
Output is correct |
9 |
Correct |
3 ms |
8148 KB |
Output is correct |
10 |
Correct |
4 ms |
8020 KB |
Output is correct |
11 |
Correct |
3 ms |
8020 KB |
Output is correct |
12 |
Correct |
3 ms |
8100 KB |
Output is correct |
13 |
Correct |
4 ms |
8100 KB |
Output is correct |
14 |
Correct |
4 ms |
8020 KB |
Output is correct |
15 |
Correct |
3 ms |
8148 KB |
Output is correct |
16 |
Correct |
4 ms |
8148 KB |
Output is correct |
17 |
Correct |
4 ms |
8148 KB |
Output is correct |
18 |
Correct |
3 ms |
8020 KB |
Output is correct |
19 |
Correct |
4 ms |
8108 KB |
Output is correct |
20 |
Correct |
5 ms |
8148 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
8020 KB |
Output is correct |
2 |
Correct |
4 ms |
8020 KB |
Output is correct |
3 |
Correct |
3 ms |
8020 KB |
Output is correct |
4 |
Correct |
3 ms |
8020 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
8148 KB |
Output is correct |
2 |
Correct |
4 ms |
8020 KB |
Output is correct |
3 |
Correct |
4 ms |
8116 KB |
Output is correct |
4 |
Correct |
3 ms |
8148 KB |
Output is correct |
5 |
Correct |
4 ms |
8108 KB |
Output is correct |
6 |
Correct |
4 ms |
8148 KB |
Output is correct |
7 |
Correct |
4 ms |
8148 KB |
Output is correct |
8 |
Correct |
4 ms |
8020 KB |
Output is correct |
9 |
Correct |
4 ms |
8148 KB |
Output is correct |
10 |
Correct |
4 ms |
8088 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
4 ms |
8148 KB |
Output is correct |
2 |
Correct |
4 ms |
8148 KB |
Output is correct |
3 |
Correct |
4 ms |
8148 KB |
Output is correct |
4 |
Correct |
4 ms |
8148 KB |
Output is correct |
5 |
Correct |
4 ms |
8148 KB |
Output is correct |
6 |
Correct |
3 ms |
8104 KB |
Output is correct |
7 |
Correct |
3 ms |
8020 KB |
Output is correct |
8 |
Correct |
4 ms |
8148 KB |
Output is correct |
9 |
Correct |
3 ms |
8148 KB |
Output is correct |
10 |
Correct |
4 ms |
8020 KB |
Output is correct |
11 |
Correct |
3 ms |
8020 KB |
Output is correct |
12 |
Correct |
3 ms |
8100 KB |
Output is correct |
13 |
Correct |
4 ms |
8100 KB |
Output is correct |
14 |
Correct |
4 ms |
8020 KB |
Output is correct |
15 |
Correct |
3 ms |
8148 KB |
Output is correct |
16 |
Correct |
4 ms |
8148 KB |
Output is correct |
17 |
Correct |
4 ms |
8148 KB |
Output is correct |
18 |
Correct |
3 ms |
8020 KB |
Output is correct |
19 |
Correct |
4 ms |
8108 KB |
Output is correct |
20 |
Correct |
5 ms |
8148 KB |
Output is correct |
21 |
Correct |
4 ms |
8020 KB |
Output is correct |
22 |
Correct |
4 ms |
8020 KB |
Output is correct |
23 |
Correct |
3 ms |
8020 KB |
Output is correct |
24 |
Correct |
3 ms |
8020 KB |
Output is correct |
25 |
Correct |
3 ms |
8148 KB |
Output is correct |
26 |
Correct |
4 ms |
8020 KB |
Output is correct |
27 |
Correct |
4 ms |
8116 KB |
Output is correct |
28 |
Correct |
3 ms |
8148 KB |
Output is correct |
29 |
Correct |
4 ms |
8108 KB |
Output is correct |
30 |
Correct |
4 ms |
8148 KB |
Output is correct |
31 |
Correct |
4 ms |
8148 KB |
Output is correct |
32 |
Correct |
4 ms |
8020 KB |
Output is correct |
33 |
Correct |
4 ms |
8148 KB |
Output is correct |
34 |
Correct |
4 ms |
8088 KB |
Output is correct |
35 |
Correct |
9 ms |
9556 KB |
Output is correct |
36 |
Correct |
4 ms |
8276 KB |
Output is correct |
37 |
Correct |
10 ms |
9816 KB |
Output is correct |
38 |
Correct |
9 ms |
10780 KB |
Output is correct |
39 |
Correct |
70 ms |
24284 KB |
Output is correct |
40 |
Correct |
73 ms |
24340 KB |
Output is correct |
41 |
Correct |
34 ms |
24236 KB |
Output is correct |
42 |
Correct |
71 ms |
24332 KB |
Output is correct |
43 |
Correct |
87 ms |
32316 KB |
Output is correct |
44 |
Correct |
35 ms |
24204 KB |
Output is correct |