답안 #758037

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
758037 2023-06-14T05:29:04 Z maomao90 Tortoise (CEOI21_tortoise) C++17
100 / 100
647 ms 39040 KB
    // Hallelujah, praise the one who set me free
    // Hallelujah, death has lost its grip on me
    // You have broken every chain, There's salvation in your name
    // Jesus Christ, my living hope
    #include <bits/stdc++.h> 
    using namespace std;
     
    #define REP(i, s, e) for (int i = (s); i < (e); i++)
    #define RREP(i, s, e) for (int i = (s); i >= (e); i--)
    template <class T>
    inline bool mnto(T& a, T b) {return a > b ? a = b, 1 : 0;}
    template <class T>
    inline bool mxto(T& a, T b) {return a < b ? a = b, 1: 0;}
    typedef long long ll;
    typedef long double ld;
    #define FI first
    #define SE second
    typedef pair<int, int> ii;
    typedef pair<ll, ll> pll;
    typedef tuple<int, int, int> iii;
    #define ALL(_a) _a.begin(), _a.end()
    #define SZ(_a) (int) _a.size()
    #define pb push_back
    typedef vector<int> vi;
    typedef vector<ll> vll;
    typedef vector<ii> vii;
    typedef vector<iii> viii;
     
    #ifndef DEBUG
    #define cerr if (0) cerr
    #endif
     
    const int INF = 1000000005;
    const ll LINF = 1000000000000000005ll;
    const int MAXN = 500005;
     
    int n;
    int a[MAXN];
    int lft[MAXN], rht[MAXN];
    int grp[MAXN], lstgrp[MAXN], prvgrp[MAXN];
    bool done[MAXN], donewalk[MAXN];
    ll ans;
     
    int fw[MAXN];
    void fincre(int i, int x) {
        i++;
        for (; i <= n; i += i & -i) {
            fw[i] += x;
        }
    }
    void fincre(int s, int e, int x) {
        fincre(s, x);
        fincre(e + 1, -x);
    }
    int fqsm(int i) {
        i++;
        int res = 0;
        for (; i > 0; i -= i & -i) {
            res += fw[i];
        }
        return res;
    }
     
    #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
    int st[MAXN * 4], lz[MAXN * 4];
    void propo(int u, int lo, int hi) {
        if (lz[u] == 0) {
            return;
        }
        MLR;
        st[lc] += lz[u];
        lz[lc] += lz[u];
        st[rc] += lz[u];
        lz[rc] += lz[u];
        lz[u] = 0;
    }
    void upd(int p, int x, int u = 1, int lo = 0, int hi = n - 1) {
        if (lo == hi) {
            st[u] = x;
            return;
        }
        MLR;
        propo(u, lo, hi);
        if (p <= mid) {
            upd(p, x, lc, lo, mid);
        } else {
            upd(p, x, rc, mid + 1, hi);
        }
        st[u] = min(st[lc], st[rc]);
    }
    void incre(int s, int e, int x, int u = 1, int lo = 0, int hi = n - 1) {
        if (s > e) {
            return;
        }
        if (lo >= s && hi <= e) {
            st[u] += x;
            lz[u] += x;
            return;
        }
        MLR;
        propo(u, lo, hi);
        if (s <= mid) {
            incre(s, e, x, lc, lo, mid);
        }
        if (e > mid) {
            incre(s, e, x, rc, mid + 1, hi);
        }
        st[u] = min(st[lc], st[rc]);
    }
    int qmn(int s, int e, int u = 1, int lo = 0, int hi = n - 1) {
        if (s > e) {
            return INF;
        }
        if (lo >= s && hi <= e) {
            return st[u];
        }
        MLR;
        propo(u, lo, hi);
        int res = INF;
        if (s <= mid) {
            mnto(res, qmn(s, e, lc, lo, mid));
        }
        if (e > mid) {
            mnto(res, qmn(s, e, rc, mid + 1, hi));
        }
        return res;
    }
     
    ii st2[MAXN * 4];
    int lz2[MAXN * 4];
    void propo2(int u, int lo, int hi) {
        if (lz2[u] == 0) {
            return;
        }
        MLR;
        st2[lc].FI += lz2[u];
        lz2[lc] += lz2[u];
        st2[rc].FI += lz2[u];
        lz2[rc] += lz2[u];
        lz2[u] = 0;
    }
    void upd2(int p, int x, int u = 1, int lo = 0, int hi = n - 1) {
        if (lo == hi) {
            st2[u] = {x, lo};
            return;
        }
        MLR;
        propo2(u, lo, hi);
        if (p <= mid) {
            upd2(p, x, lc, lo, mid);
        } else {
            upd2(p, x, rc, mid + 1, hi);
        }
        st2[u] = min(st2[lc], st2[rc]);
    }
    void incre2(int s, int e, int x, int u = 1, int lo = 0, int hi = n - 1) {
        if (s > e) {
            return;
        }
        if (lo >= s && hi <= e) {
            st2[u].FI += x;
            lz2[u] += x;
            return;
        }
        MLR;
        propo2(u, lo, hi);
        if (s <= mid) {
            incre2(s, e, x, lc, lo, mid);
        }
        if (e > mid) {
            incre2(s, e, x, rc, mid + 1, hi);
        }
        st2[u] = min(st2[lc], st2[rc]);
    }
    ii qmn2(int s, int e, int u = 1, int lo = 0, int hi = n - 1) {
        if (s > e) {
            return {INF, INF};
        }
        if (lo >= s && hi <= e) {
            return st2[u];
        }
        MLR;
        propo2(u, lo, hi);
        ii res = {INF, INF};
        if (s <= mid) {
            mnto(res, qmn2(s, e, lc, lo, mid));
        }
        if (e > mid) {
            mnto(res, qmn2(s, e, rc, mid + 1, hi));
        }
        return res;
    }
     
    int main() {
    #ifndef DEBUG
        ios::sync_with_stdio(0), cin.tie(0);
    #endif
        cin >> n;
        ll tot = 0;
        REP (i, 0, n) {
            cin >> a[i];
            if (a[i] > 0) {
                tot += a[i];
            }
        }
        int prv = -INF;
        int gc = 0;
        REP (i, 0, n) {
            if (a[i] == -1) {
                prv = i;
                gc++;
            }
            lft[i] = prv;
            grp[i] = gc;
        }
        prv = INF;
        RREP (i, n - 1, 0) {
            if (a[i] == -1) {
                prv = i;
            }
            rht[i] = prv;
        }
        vi id, pos;
        prv = -1;
        REP (i, 0, n) {
            if (a[i] == -1) {
                lstgrp[grp[i] - 1] = prv;
            }
            if (a[i] <= 0) {
                continue;
            }
            id.pb(i);
            pos.pb(i);
            prv = i;
        }
        sort(ALL(id), [&] (int l, int r) {
                return ii{min(l - lft[l], rht[l] - l), -l} < 
                ii{min(r - lft[r], rht[r] - r), -r};
                });
        REP (i, 1, n) {
            fincre(i, n - 1, 1);
        }
        REP (i, 0, n) {
            upd(i, INF);
            upd2(i, INF);
        }
        REP (i, 0, gc + 1) {
            if (lstgrp[i] == -1 || grp[lstgrp[i]] != i) {
                continue;
            }
            upd2(lstgrp[i], lstgrp[i]);
        }
        memset(prvgrp, -1, sizeof prvgrp);
        for (int i : id) {
            cerr << i << '\n';
            done[i] = 1;
            int w = 2 * min(i - lft[i], rht[i] - i);
            // x <= a[i]
            int mn = qmn(i + 1, n - 1);
            assert(mn >= 0);
            // x * w <= mn
            // x <= floor(mn / w)
            int x1 = mn / w;
            int ct = fqsm(i);
            if (ct > 2 * i) {
                continue;
            }
            bool delta = 0;
            if (i - lft[i] <= rht[i] - i) { // left cycle
                if (donewalk[grp[i]]) {
                    continue;
                }
                auto apply = [&] (int x, bool walk) {
                    if (x + walk == 0) {
                        return;
                    }
                    delta = 1;
                    donewalk[grp[i]] |= walk;
                    cerr << "APPLY: " << x << ' ' << walk << '\n';
                    ans += x + walk;
                    fincre(i, n - 1, x * w);
                    incre(i, n - 1, -x * w);
                    incre2(i, n - 1, -x * w);
                    // ct + (x - 1) * w + upd <= 2 * i
                    assert(ct + (x - 1 + walk) * w <= 2 * i);
                    upd(i, 2 * i - (ct + (x - 1 + walk) * w));
                };
                // ct + (x - 1) * w <= 2 * i
                // x <= (2 * i - ct) / w + 1
                int x2 = (2 * i - ct) / w + 1;
                if (a[i] < min(x1, x2)) {
                    auto ptr = upper_bound(ALL(pos), i);
                    bool walk = 0;
                    if (ptr == pos.end() || grp[*ptr] != grp[i] || done[*ptr]) {
                        walk = 1;
                    }
                    if (donewalk[grp[i]]) {
                        walk = 0;
                    }
                    apply(a[i] - walk, walk);
                    if (a[i] + walk) {
                        prvgrp[grp[i]] = i;
                    }
                } else if (rht[i] == INF) {
                    apply(min(x1, x2), 0);
                    if (min(x1, x2)) {
                        prvgrp[grp[i]] = i;
                    }
                } else if (x1 < x2) { // stopped by suffix but still have extra for walk
                    auto ptr = upper_bound(ALL(pos), i);
                    bool walk = 0;
                    if (ptr == pos.end() || grp[*ptr] != grp[i] || done[*ptr]) {
                        walk = 1;
                    }
                    if (donewalk[grp[i]]) {
                        walk = 0;
                    }
                    if (a[i] == x1 && walk) {
                        apply(x1 - 1, 1);
                    } else {
                        apply(x1, walk);
                    }
                } else {
                    // no extra for walk unless replace one cycle with walk
                    int nct = ct + x2 * w;
                    // nct + j - i <= 2 * j
                    // nct - i <= j
                    int j = nct - i;
                    auto ptr = lower_bound(ALL(pos), j);
                    bool walk = 0;
                    if (ptr == pos.end() || grp[*ptr] != grp[i] || done[*ptr]) {
                        walk = 1;
                    }
                    if (donewalk[grp[i]]) {
                        walk = 0;
                    }
                    apply(x2 - walk, walk);
                }
            } else { // right cycle
                auto apply = [&] (int x) {
                    if (x == 0) {
                        return;
                    }
                    delta = 1;
                    cerr << "APPLY: " << x << '\n';
                    ans += x;
                    fincre(i, n - 1, x * w);
                    incre(i, n - 1, -x * w);
                    incre2(i, n - 1, -x * w);
                    // ct + x * w + upd <= 2 * i
                    assert(ct + x * w <= 2 * i);
                    upd(i, 2 * i - (ct + x * w));
                };
                auto ptr = lower_bound(ALL(pos), i);
                bool walk = 0;
                if (ptr == pos.begin() || grp[*prev(ptr)] != grp[i] || 
                        done[*prev(ptr)] || fqsm(*prev(ptr)) > 2 * (*prev(ptr))) {
                    walk = 1;
                }
                if (donewalk[grp[i]]) {
                    walk = 0;
                }
                if (walk) {
                    cerr << "WALK\n";
                    donewalk[grp[i]] = 1;
                    a[i]--;
                    ans++;
                    // ct + upd <= 2 * i
                    upd(i, 2 * i - ct);
                } else if (!donewalk[grp[i]]) {
                    assert(lstgrp[grp[i]] == i);
                    upd2(i, INF);
                    lstgrp[grp[i]] = *prev(ptr);
                    int ct = fqsm(*prev(ptr));
                    upd2(*prev(ptr), 2 * (*prev(ptr)) - ct);
                }
                // ct + x * w <= 2 * i
                // x <= (2 * i - ct) / w
                int x2 = (2 * i - ct) / w;
                apply(min({a[i], x1, x2}));
            }
            while (st2[1].FI < 0) {
                int u = st2[1].SE, g = grp[u], v = prvgrp[g];
                upd2(u, INF);
                if (donewalk[g]) {
                    continue;
                }
                cerr << "HI " << u << ' ' << g << ' ' << v << '\n';
                if (v == -1) {
                    continue;
                }
                donewalk[g] = 1;
                int w = 2 * min(v - lft[v], rht[v] - v);
                if (v - lft[v] <= rht[v] - v) {
                    fincre(v + 1, n - 1, -w);
                    incre(v + 1, n - 1, w);
                    incre2(v + 1, n - 1, w);
                } else {
                    fincre(v, n - 1, -w);
                    incre(v, n - 1, w);
                    incre2(v, n - 1, w);
                }
            }
            if (delta) {
                prvgrp[grp[i]] = i;
            }
        }
        cout << tot - ans << '\n';
        return 0;
    }

Compilation message

tortoise.cpp: In function 'void propo(int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:70:9: note: in expansion of macro 'MLR'
   70 |         MLR;
      |         ^~~
tortoise.cpp:64:21: warning: unused variable 'mid' [-Wunused-variable]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                     ^~~
tortoise.cpp:70:9: note: in expansion of macro 'MLR'
   70 |         MLR;
      |         ^~~
tortoise.cpp: In function 'void upd(int, int, int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:82:9: note: in expansion of macro 'MLR'
   82 |         MLR;
      |         ^~~
tortoise.cpp: In function 'void incre(int, int, int, int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:100:9: note: in expansion of macro 'MLR'
  100 |         MLR;
      |         ^~~
tortoise.cpp: In function 'int qmn(int, int, int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:117:9: note: in expansion of macro 'MLR'
  117 |         MLR;
      |         ^~~
tortoise.cpp: In function 'void propo2(int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:135:9: note: in expansion of macro 'MLR'
  135 |         MLR;
      |         ^~~
tortoise.cpp:64:21: warning: unused variable 'mid' [-Wunused-variable]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                     ^~~
tortoise.cpp:135:9: note: in expansion of macro 'MLR'
  135 |         MLR;
      |         ^~~
tortoise.cpp: In function 'void upd2(int, int, int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:147:9: note: in expansion of macro 'MLR'
  147 |         MLR;
      |         ^~~
tortoise.cpp: In function 'void incre2(int, int, int, int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:165:9: note: in expansion of macro 'MLR'
  165 |         MLR;
      |         ^~~
tortoise.cpp: In function 'ii qmn2(int, int, int, int, int)':
tortoise.cpp:64:30: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   64 |     #define MLR int mid = lo + hi >> 1, lc = u << 1, rc = u << 1 ^ 1
      |                           ~~~^~~~
tortoise.cpp:182:9: note: in expansion of macro 'MLR'
  182 |         MLR;
      |         ^~~
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2260 KB Output is correct
2 Correct 1 ms 2260 KB Output is correct
3 Correct 2 ms 2252 KB Output is correct
4 Correct 2 ms 2260 KB Output is correct
5 Correct 2 ms 2260 KB Output is correct
6 Correct 2 ms 2260 KB Output is correct
7 Correct 1 ms 2260 KB Output is correct
8 Correct 2 ms 2244 KB Output is correct
9 Correct 1 ms 2260 KB Output is correct
10 Correct 1 ms 2260 KB Output is correct
11 Correct 1 ms 2244 KB Output is correct
12 Correct 1 ms 2260 KB Output is correct
13 Correct 1 ms 2252 KB Output is correct
14 Correct 2 ms 2240 KB Output is correct
15 Correct 1 ms 2260 KB Output is correct
16 Correct 1 ms 2260 KB Output is correct
17 Correct 2 ms 2260 KB Output is correct
18 Correct 2 ms 2248 KB Output is correct
19 Correct 2 ms 2260 KB Output is correct
20 Correct 1 ms 2260 KB Output is correct
21 Correct 1 ms 2260 KB Output is correct
22 Correct 1 ms 2244 KB Output is correct
23 Correct 2 ms 2260 KB Output is correct
24 Correct 1 ms 2260 KB Output is correct
25 Correct 1 ms 2260 KB Output is correct
26 Correct 1 ms 2260 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2260 KB Output is correct
2 Correct 1 ms 2260 KB Output is correct
3 Correct 2 ms 2252 KB Output is correct
4 Correct 2 ms 2260 KB Output is correct
5 Correct 2 ms 2260 KB Output is correct
6 Correct 2 ms 2260 KB Output is correct
7 Correct 1 ms 2260 KB Output is correct
8 Correct 2 ms 2244 KB Output is correct
9 Correct 1 ms 2260 KB Output is correct
10 Correct 1 ms 2260 KB Output is correct
11 Correct 1 ms 2244 KB Output is correct
12 Correct 1 ms 2260 KB Output is correct
13 Correct 1 ms 2252 KB Output is correct
14 Correct 2 ms 2240 KB Output is correct
15 Correct 1 ms 2260 KB Output is correct
16 Correct 1 ms 2260 KB Output is correct
17 Correct 2 ms 2260 KB Output is correct
18 Correct 2 ms 2248 KB Output is correct
19 Correct 2 ms 2260 KB Output is correct
20 Correct 1 ms 2260 KB Output is correct
21 Correct 1 ms 2260 KB Output is correct
22 Correct 1 ms 2244 KB Output is correct
23 Correct 2 ms 2260 KB Output is correct
24 Correct 1 ms 2260 KB Output is correct
25 Correct 1 ms 2260 KB Output is correct
26 Correct 1 ms 2260 KB Output is correct
27 Correct 1 ms 2372 KB Output is correct
28 Correct 2 ms 2388 KB Output is correct
29 Correct 1 ms 2388 KB Output is correct
30 Correct 2 ms 2388 KB Output is correct
31 Correct 2 ms 2372 KB Output is correct
32 Correct 2 ms 2376 KB Output is correct
33 Correct 1 ms 2388 KB Output is correct
34 Correct 2 ms 2376 KB Output is correct
35 Correct 2 ms 2388 KB Output is correct
36 Correct 2 ms 2388 KB Output is correct
37 Correct 2 ms 2388 KB Output is correct
38 Correct 2 ms 2388 KB Output is correct
39 Correct 1 ms 2388 KB Output is correct
40 Correct 1 ms 2388 KB Output is correct
41 Correct 2 ms 2388 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2260 KB Output is correct
2 Correct 1 ms 2260 KB Output is correct
3 Correct 2 ms 2252 KB Output is correct
4 Correct 2 ms 2260 KB Output is correct
5 Correct 2 ms 2260 KB Output is correct
6 Correct 2 ms 2260 KB Output is correct
7 Correct 1 ms 2260 KB Output is correct
8 Correct 2 ms 2244 KB Output is correct
9 Correct 1 ms 2260 KB Output is correct
10 Correct 1 ms 2260 KB Output is correct
11 Correct 1 ms 2244 KB Output is correct
12 Correct 1 ms 2260 KB Output is correct
13 Correct 1 ms 2252 KB Output is correct
14 Correct 2 ms 2240 KB Output is correct
15 Correct 1 ms 2260 KB Output is correct
16 Correct 1 ms 2260 KB Output is correct
17 Correct 2 ms 2260 KB Output is correct
18 Correct 2 ms 2248 KB Output is correct
19 Correct 2 ms 2260 KB Output is correct
20 Correct 1 ms 2260 KB Output is correct
21 Correct 1 ms 2260 KB Output is correct
22 Correct 1 ms 2244 KB Output is correct
23 Correct 2 ms 2260 KB Output is correct
24 Correct 1 ms 2260 KB Output is correct
25 Correct 1 ms 2260 KB Output is correct
26 Correct 1 ms 2260 KB Output is correct
27 Correct 1 ms 2372 KB Output is correct
28 Correct 2 ms 2388 KB Output is correct
29 Correct 1 ms 2388 KB Output is correct
30 Correct 2 ms 2388 KB Output is correct
31 Correct 2 ms 2372 KB Output is correct
32 Correct 2 ms 2376 KB Output is correct
33 Correct 1 ms 2388 KB Output is correct
34 Correct 2 ms 2376 KB Output is correct
35 Correct 2 ms 2388 KB Output is correct
36 Correct 2 ms 2388 KB Output is correct
37 Correct 2 ms 2388 KB Output is correct
38 Correct 2 ms 2388 KB Output is correct
39 Correct 1 ms 2388 KB Output is correct
40 Correct 1 ms 2388 KB Output is correct
41 Correct 2 ms 2388 KB Output is correct
42 Correct 1 ms 2260 KB Output is correct
43 Correct 2 ms 2260 KB Output is correct
44 Correct 2 ms 2376 KB Output is correct
45 Correct 1 ms 2376 KB Output is correct
46 Correct 2 ms 2260 KB Output is correct
47 Correct 1 ms 2260 KB Output is correct
48 Correct 2 ms 2388 KB Output is correct
49 Correct 1 ms 2388 KB Output is correct
50 Correct 2 ms 2388 KB Output is correct
51 Correct 2 ms 2388 KB Output is correct
52 Correct 1 ms 2388 KB Output is correct
53 Correct 2 ms 2376 KB Output is correct
54 Correct 1 ms 2388 KB Output is correct
55 Correct 1 ms 2388 KB Output is correct
56 Correct 2 ms 2388 KB Output is correct
57 Correct 1 ms 2388 KB Output is correct
58 Correct 2 ms 2388 KB Output is correct
59 Correct 2 ms 2388 KB Output is correct
60 Correct 2 ms 2388 KB Output is correct
61 Correct 2 ms 2388 KB Output is correct
62 Correct 2 ms 2388 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2260 KB Output is correct
2 Correct 1 ms 2260 KB Output is correct
3 Correct 2 ms 2252 KB Output is correct
4 Correct 2 ms 2260 KB Output is correct
5 Correct 2 ms 2260 KB Output is correct
6 Correct 2 ms 2260 KB Output is correct
7 Correct 1 ms 2260 KB Output is correct
8 Correct 2 ms 2244 KB Output is correct
9 Correct 1 ms 2260 KB Output is correct
10 Correct 1 ms 2260 KB Output is correct
11 Correct 1 ms 2244 KB Output is correct
12 Correct 1 ms 2260 KB Output is correct
13 Correct 1 ms 2252 KB Output is correct
14 Correct 2 ms 2240 KB Output is correct
15 Correct 1 ms 2260 KB Output is correct
16 Correct 1 ms 2260 KB Output is correct
17 Correct 2 ms 2260 KB Output is correct
18 Correct 2 ms 2248 KB Output is correct
19 Correct 2 ms 2260 KB Output is correct
20 Correct 1 ms 2260 KB Output is correct
21 Correct 1 ms 2260 KB Output is correct
22 Correct 1 ms 2244 KB Output is correct
23 Correct 2 ms 2260 KB Output is correct
24 Correct 1 ms 2260 KB Output is correct
25 Correct 1 ms 2260 KB Output is correct
26 Correct 1 ms 2260 KB Output is correct
27 Correct 1 ms 2372 KB Output is correct
28 Correct 2 ms 2388 KB Output is correct
29 Correct 1 ms 2388 KB Output is correct
30 Correct 2 ms 2388 KB Output is correct
31 Correct 2 ms 2372 KB Output is correct
32 Correct 2 ms 2376 KB Output is correct
33 Correct 1 ms 2388 KB Output is correct
34 Correct 2 ms 2376 KB Output is correct
35 Correct 2 ms 2388 KB Output is correct
36 Correct 2 ms 2388 KB Output is correct
37 Correct 2 ms 2388 KB Output is correct
38 Correct 2 ms 2388 KB Output is correct
39 Correct 1 ms 2388 KB Output is correct
40 Correct 1 ms 2388 KB Output is correct
41 Correct 2 ms 2388 KB Output is correct
42 Correct 1 ms 2260 KB Output is correct
43 Correct 2 ms 2260 KB Output is correct
44 Correct 2 ms 2376 KB Output is correct
45 Correct 1 ms 2376 KB Output is correct
46 Correct 2 ms 2260 KB Output is correct
47 Correct 1 ms 2260 KB Output is correct
48 Correct 2 ms 2388 KB Output is correct
49 Correct 1 ms 2388 KB Output is correct
50 Correct 2 ms 2388 KB Output is correct
51 Correct 2 ms 2388 KB Output is correct
52 Correct 1 ms 2388 KB Output is correct
53 Correct 2 ms 2376 KB Output is correct
54 Correct 1 ms 2388 KB Output is correct
55 Correct 1 ms 2388 KB Output is correct
56 Correct 2 ms 2388 KB Output is correct
57 Correct 1 ms 2388 KB Output is correct
58 Correct 2 ms 2388 KB Output is correct
59 Correct 2 ms 2388 KB Output is correct
60 Correct 2 ms 2388 KB Output is correct
61 Correct 2 ms 2388 KB Output is correct
62 Correct 2 ms 2388 KB Output is correct
63 Correct 6 ms 2772 KB Output is correct
64 Correct 5 ms 2772 KB Output is correct
65 Correct 4 ms 2768 KB Output is correct
66 Correct 5 ms 2772 KB Output is correct
67 Correct 6 ms 2772 KB Output is correct
68 Correct 5 ms 2772 KB Output is correct
69 Correct 5 ms 2772 KB Output is correct
70 Correct 5 ms 2808 KB Output is correct
71 Correct 6 ms 2772 KB Output is correct
72 Correct 5 ms 2772 KB Output is correct
73 Correct 5 ms 2860 KB Output is correct
74 Correct 6 ms 2772 KB Output is correct
75 Correct 3 ms 2644 KB Output is correct
76 Correct 5 ms 2788 KB Output is correct
77 Correct 5 ms 2772 KB Output is correct
78 Correct 5 ms 2772 KB Output is correct
79 Correct 5 ms 2772 KB Output is correct
80 Correct 5 ms 2764 KB Output is correct
81 Correct 5 ms 2768 KB Output is correct
82 Correct 4 ms 2772 KB Output is correct
83 Correct 5 ms 2776 KB Output is correct
84 Correct 4 ms 2772 KB Output is correct
85 Correct 5 ms 2900 KB Output is correct
86 Correct 5 ms 2772 KB Output is correct
87 Correct 5 ms 2772 KB Output is correct
88 Correct 5 ms 2768 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 2260 KB Output is correct
2 Correct 1 ms 2260 KB Output is correct
3 Correct 2 ms 2252 KB Output is correct
4 Correct 2 ms 2260 KB Output is correct
5 Correct 2 ms 2260 KB Output is correct
6 Correct 2 ms 2260 KB Output is correct
7 Correct 1 ms 2260 KB Output is correct
8 Correct 2 ms 2244 KB Output is correct
9 Correct 1 ms 2260 KB Output is correct
10 Correct 1 ms 2260 KB Output is correct
11 Correct 1 ms 2244 KB Output is correct
12 Correct 1 ms 2260 KB Output is correct
13 Correct 1 ms 2252 KB Output is correct
14 Correct 2 ms 2240 KB Output is correct
15 Correct 1 ms 2260 KB Output is correct
16 Correct 1 ms 2260 KB Output is correct
17 Correct 2 ms 2260 KB Output is correct
18 Correct 2 ms 2248 KB Output is correct
19 Correct 2 ms 2260 KB Output is correct
20 Correct 1 ms 2260 KB Output is correct
21 Correct 1 ms 2260 KB Output is correct
22 Correct 1 ms 2244 KB Output is correct
23 Correct 2 ms 2260 KB Output is correct
24 Correct 1 ms 2260 KB Output is correct
25 Correct 1 ms 2260 KB Output is correct
26 Correct 1 ms 2260 KB Output is correct
27 Correct 1 ms 2372 KB Output is correct
28 Correct 2 ms 2388 KB Output is correct
29 Correct 1 ms 2388 KB Output is correct
30 Correct 2 ms 2388 KB Output is correct
31 Correct 2 ms 2372 KB Output is correct
32 Correct 2 ms 2376 KB Output is correct
33 Correct 1 ms 2388 KB Output is correct
34 Correct 2 ms 2376 KB Output is correct
35 Correct 2 ms 2388 KB Output is correct
36 Correct 2 ms 2388 KB Output is correct
37 Correct 2 ms 2388 KB Output is correct
38 Correct 2 ms 2388 KB Output is correct
39 Correct 1 ms 2388 KB Output is correct
40 Correct 1 ms 2388 KB Output is correct
41 Correct 2 ms 2388 KB Output is correct
42 Correct 1 ms 2260 KB Output is correct
43 Correct 2 ms 2260 KB Output is correct
44 Correct 2 ms 2376 KB Output is correct
45 Correct 1 ms 2376 KB Output is correct
46 Correct 2 ms 2260 KB Output is correct
47 Correct 1 ms 2260 KB Output is correct
48 Correct 2 ms 2388 KB Output is correct
49 Correct 1 ms 2388 KB Output is correct
50 Correct 2 ms 2388 KB Output is correct
51 Correct 2 ms 2388 KB Output is correct
52 Correct 1 ms 2388 KB Output is correct
53 Correct 2 ms 2376 KB Output is correct
54 Correct 1 ms 2388 KB Output is correct
55 Correct 1 ms 2388 KB Output is correct
56 Correct 2 ms 2388 KB Output is correct
57 Correct 1 ms 2388 KB Output is correct
58 Correct 2 ms 2388 KB Output is correct
59 Correct 2 ms 2388 KB Output is correct
60 Correct 2 ms 2388 KB Output is correct
61 Correct 2 ms 2388 KB Output is correct
62 Correct 2 ms 2388 KB Output is correct
63 Correct 6 ms 2772 KB Output is correct
64 Correct 5 ms 2772 KB Output is correct
65 Correct 4 ms 2768 KB Output is correct
66 Correct 5 ms 2772 KB Output is correct
67 Correct 6 ms 2772 KB Output is correct
68 Correct 5 ms 2772 KB Output is correct
69 Correct 5 ms 2772 KB Output is correct
70 Correct 5 ms 2808 KB Output is correct
71 Correct 6 ms 2772 KB Output is correct
72 Correct 5 ms 2772 KB Output is correct
73 Correct 5 ms 2860 KB Output is correct
74 Correct 6 ms 2772 KB Output is correct
75 Correct 3 ms 2644 KB Output is correct
76 Correct 5 ms 2788 KB Output is correct
77 Correct 5 ms 2772 KB Output is correct
78 Correct 5 ms 2772 KB Output is correct
79 Correct 5 ms 2772 KB Output is correct
80 Correct 5 ms 2764 KB Output is correct
81 Correct 5 ms 2768 KB Output is correct
82 Correct 4 ms 2772 KB Output is correct
83 Correct 5 ms 2776 KB Output is correct
84 Correct 4 ms 2772 KB Output is correct
85 Correct 5 ms 2900 KB Output is correct
86 Correct 5 ms 2772 KB Output is correct
87 Correct 5 ms 2772 KB Output is correct
88 Correct 5 ms 2768 KB Output is correct
89 Correct 319 ms 35540 KB Output is correct
90 Correct 363 ms 35772 KB Output is correct
91 Correct 324 ms 35520 KB Output is correct
92 Correct 384 ms 36152 KB Output is correct
93 Correct 396 ms 36076 KB Output is correct
94 Correct 390 ms 36148 KB Output is correct
95 Correct 368 ms 35628 KB Output is correct
96 Correct 350 ms 35916 KB Output is correct
97 Correct 415 ms 36024 KB Output is correct
98 Correct 510 ms 36244 KB Output is correct
99 Correct 585 ms 39040 KB Output is correct
100 Correct 560 ms 38692 KB Output is correct
101 Correct 647 ms 38828 KB Output is correct
102 Correct 642 ms 38912 KB Output is correct
103 Correct 203 ms 25484 KB Output is correct
104 Correct 23 ms 4564 KB Output is correct
105 Correct 23 ms 4564 KB Output is correct
106 Correct 26 ms 4568 KB Output is correct
107 Correct 26 ms 4436 KB Output is correct
108 Correct 24 ms 4520 KB Output is correct
109 Correct 195 ms 25388 KB Output is correct