답안 #755145

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
755145 2023-06-09T12:47:31 Z boris_mihov 송신탑 (IOI22_towers) C++17
40 / 100
1402 ms 57084 KB
#include <algorithm>
#include <iostream>
#include <numeric>
#include <cassert>
#include <vector>
#include <stack>

typedef long long llong;
const int MAXLOG = 20 + 5;
const int MAXN = 100000 + 10;
const int INF  = 1e9;

int n;
struct MST
{
    std::vector <int> tree[4*MAXN];
    void build(int l, int r, int node, int vals[])
    {
        if (l == r)
        {
            tree[node].push_back(vals[l]);
            return;
        }

        int mid = (l + r) / 2;
        build(l, mid, 2*node, vals);
        build(mid + 1, r, 2*node + 1, vals);
        tree[node].reserve(r - l + 1);

        int lPtr = 0, rPtr = 0;
        for (int i = l ; i <= r ; ++i)
        {
            if (lPtr == tree[2*node].size())
            {
                tree[node].push_back(tree[2*node + 1][rPtr++]);
                continue;
            }

            if (rPtr == tree[2*node + 1].size())
            {
                tree[node].push_back(tree[2*node][lPtr++]);
                continue;
            }

            if (tree[2*node][lPtr] < tree[2*node + 1][rPtr])
            {
                tree[node].push_back(tree[2*node][lPtr++]);
            } else
            {
                tree[node].push_back(tree[2*node + 1][rPtr++]);
            }
        }
    }

    int binaryCount(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] <= val) l = mid;
            else r = mid;
        }

        return r;
    }

    int binaryFirst(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] < val) l = mid;
            else r = mid;
        }

        return (r == tree[node].size() ? INF : tree[node][r]);
    }

    int binaryLast(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] <= val) l = mid;
            else r = mid;
        }

        return (l == -1 ? 0 : tree[node][l]);
    }

    int queryCount(int l, int r, int node, int queryL, int queryR, int queryValL, int queryValR)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryCount(node, queryValR) - binaryCount(node, queryValL - 1);
        }

        int res = 0;
        int mid = (l + r) / 2;
        if (queryL <= mid) res += queryCount(l, mid, 2*node, queryL, queryR, queryValL, queryValR);
        if (mid + 1 <= queryR) res += queryCount(mid + 1, r, 2*node + 1, queryL, queryR, queryValL, queryValR);
        return res;
    }

    int queryFirst(int l, int r, int node, int queryL, int queryR, int queryVal)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryFirst(node, queryVal);
        }

        int res = INF;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = std::min(res, queryFirst(l, mid, 2*node, queryL, queryR, queryVal));
        if (mid + 1 <= queryR) res = std::min(res, queryFirst(mid + 1, r, 2*node + 1, queryL, queryR, queryVal));
        return res;
    }

    int queryLast(int l, int r, int node, int queryL, int queryR, int queryVal)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryLast(node, queryVal);
        }

        int res = 0;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = std::max(res, queryLast(l, mid, 2*node, queryL, queryR, queryVal));
        if (mid + 1 <= queryR) res = std::max(res, queryLast(mid + 1, r, 2*node + 1, queryL, queryR, queryVal));
        return res;
    }

    void build(int vals[])
    {
        build(1, n, 1, vals);
    }

    int queryCount(int to, int l, int r)
    {
        return queryCount(1, n, 1, 1, to, l, r);
    }

    int queryFirst(int to, int l)
    {
        return queryFirst(1, n, 1, 1, to, l);
    }

    int queryLast(int to, int r)
    {
        return queryLast(1, n, 1, 1, to, r);
    }
};

MST left, right;
struct SparseMAX
{
    int sparseMAX[MAXLOG][MAXN];
    int vals[MAXN];
    int lg[MAXN];

    int cmp(int x, int y)
    {
        if (vals[x] > vals[y]) return x;
        return y;
    }

    void build(int _vals[])
    {
        for (int i = 1 ; i <= n ; ++i)
        {
            sparseMAX[0][i] = i;
            vals[i] = _vals[i];
        }

        for (int log = 1 ; (1 << log) <= n ; ++log)
        {
            for (int i = 1 ; i + (1 << log) - 1 <= n ; ++i)
            {
                sparseMAX[log][i] = cmp(sparseMAX[log - 1][i], sparseMAX[log - 1][i + (1 << log - 1)]);
            }
        }
    
        for (int i = 1 ; i <= n ; ++i)
        {
            lg[i] = lg[i - 1];
            if ((1 << lg[i] + 1) < i)
            {
                lg[i]++;
            }
        }
    }

    int findMAX(int l, int r)
    {
        int log = lg[r - l + 1];
        return vals[cmp(sparseMAX[log][l], sparseMAX[log][r - (1 << log) + 1])];
    }

    int findIDX(int l, int r)
    {
        int log = lg[r - l + 1];
        return cmp(sparseMAX[log][l], sparseMAX[log][r - (1 << log) + 1]);
    }
};

struct SegmentTree
{
    struct Node
    {
        int max;
        int min;
        int maxDiffL;
        int maxDiffR;
        
        Node()
        {
            max = -1;
        }
    };

    Node combine(Node left, Node right)
    {
        if (left.max == -1)
        {
            return right;
        }

        Node res;
        res.min = std::min(left.min, right.min);
        res.max = std::max(left.max, right.max);
        res.maxDiffL = std::max(left.maxDiffL, right.maxDiffL);
        res.maxDiffR = std::max(left.maxDiffR, right.maxDiffR);
        res.maxDiffL = std::max(res.maxDiffL, right.max - left.min);
        res.maxDiffR = std::max(res.maxDiffR, left.max - right.min);
        return res;
    }

    Node tree[4*MAXN];
    void build(int l, int r, int node, int vals[])
    {
        if (l == r)
        {
            tree[node].min = vals[l];
            tree[node].max = vals[l];
            tree[node].maxDiffL = 0;
            tree[node].maxDiffR = 0;
            return;
        }

        int mid = (l + r) / 2;
        build(l, mid, 2*node, vals);
        build(mid + 1, r, 2*node + 1, vals);
        tree[node] = combine(tree[2*node], tree[2*node + 1]);
    }    

    Node query(int l, int r, int node, int queryL, int queryR)
    {
        if (queryL <= l && r <= queryR)
        {
            return tree[node];
        }

        Node res;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = combine(res, query(l, mid, 2*node, queryL, queryR));
        if (mid + 1 <= queryR) res = combine(res, query(mid + 1, r, 2*node + 1, queryL, queryR));
        return res;
    }

    void build(int vals[])
    {
        build(1, n, 1, vals);
    }

    int queryL(int l, int r)
    {
        return query(1, n, 1, l, r).maxDiffL;
    }

    int queryR(int l, int r)
    {
        return query(1, n, 1, l, r).maxDiffR;
    }
};

int a[MAXN];
int b[MAXN];
int c[MAXN];
int d[MAXN];
int h[MAXN];
int perm[MAXN];
int cost[MAXN];
SparseMAX sparseMAX;
SegmentTree maxDiff;
std::stack <int> st;
std::vector <int> v;
MST tree;

void init(int N, std::vector <int> H) 
{
    n = N;
    for (int i = 1 ; i <= n ; ++i)
    {
        h[i] = H[i - 1];
    }

    sparseMAX.build(h);
    st.push(0);

    for (int i = 1 ; i <= n ; ++i)
    {
        while (h[st.top()] > h[i])
        {
            st.pop();
        }

        a[i] = st.top();
        st.push(i);
    }


    while (!st.empty())
    {
        st.pop();
    }

    st.push(n + 1);
    for (int i = n ; i >= 1 ; --i)
    {
        while (h[st.top()] > h[i])
        {
            st.pop();
        }

        c[i] = st.top();
        st.push(i);
    }

    for (int i = 1 ; i <= n ; ++i)
    {
        if (a[i] == i - 1)
        {
            b[i] = 0;   
        } else
        {
            b[i] = sparseMAX.findMAX(a[i] + 1, i - 1) - h[i];
        }

        if (c[i] == i + 1)
        {
            d[i] = 0;
        } else
        {
            d[i] = sparseMAX.findMAX(i + 1, c[i] - 1) - h[i];
        }
    }

    for (int i = 1 ; i <= n ; ++i)
    {
        cost[i] = INF; 
        if (a[i] > 0) cost[i] = std::min(cost[i], b[i]);
        if (c[i] < n + 1) cost[i] = std::min(cost[i], d[i]);
    }

    std::iota(perm + 1, perm + 1 + n, 1);
    std::sort(perm + 1, perm + 1 + n, [&](const int &x, const int &y)
    {
        return cost[x] > cost[y];
    });

    tree.build(perm);
    maxDiff.build(h);
}

int max_towers(int L, int R, int D) 
{
    L++; R++;
    int l = 0, r = n + 1, mid;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (cost[perm[mid]] >= D) l = mid;
        else r = mid;
    }

    if (l == 0)
    {
        return 1;
    }

    int cnt = tree.queryCount(l, L, R);
    if (cnt == 0)
    {
        l = L - 1;
        r = R + 1;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (maxDiff.queryL(l, mid) >= D && maxDiff.queryR(mid, r) >= D)
            {
                return 2;
            }

            if (maxDiff.queryL(l, mid) >= D) l = mid;
            else r = mid;
        }

        return 1;
    }

    int first = tree.queryFirst(l, L);
    int last = tree.queryLast(l, R);

    l = L, r = first;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (sparseMAX.findMAX(mid, first - 1) < h[first] + D) r = mid;
        else l = mid;
    }

    if (maxDiff.queryL(L, l) >= D)
    {
        cnt++;
    }

    l = last, r = R;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (sparseMAX.findMAX(last + 1, mid) < h[last] + D) l = mid;
        else r = mid;
    }

    if (maxDiff.queryR(r, R) >= D)
    {
        cnt++;
    }

    return cnt;
}

Compilation message

towers.cpp: In member function 'void MST::build(int, int, int, int*)':
towers.cpp:33:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   33 |             if (lPtr == tree[2*node].size())
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~
towers.cpp:39:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   39 |             if (rPtr == tree[2*node + 1].size())
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp: In member function 'int MST::binaryFirst(int, int)':
towers.cpp:78:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   78 |         return (r == tree[node].size() ? INF : tree[node][r]);
      |                 ~~^~~~~~~~~~~~~~~~~~~~
towers.cpp: In member function 'void SparseMAX::build(int*)':
towers.cpp:182:97: warning: suggest parentheses around '-' inside '<<' [-Wparentheses]
  182 |                 sparseMAX[log][i] = cmp(sparseMAX[log - 1][i], sparseMAX[log - 1][i + (1 << log - 1)]);
      |                                                                                             ~~~~^~~
towers.cpp:189:29: warning: suggest parentheses around '+' inside '<<' [-Wparentheses]
  189 |             if ((1 << lg[i] + 1) < i)
      |                       ~~~~~~^~~
# 결과 실행 시간 메모리 Grader output
1 Incorrect 532 ms 47564 KB 85th lines differ - on the 1st token, expected: '2', found: '1'
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 34896 KB Output is correct
2 Correct 19 ms 35152 KB Output is correct
3 Correct 19 ms 35092 KB Output is correct
4 Correct 19 ms 35116 KB Output is correct
5 Correct 19 ms 35152 KB Output is correct
6 Correct 18 ms 35180 KB Output is correct
7 Correct 18 ms 35052 KB Output is correct
8 Correct 18 ms 35116 KB Output is correct
9 Correct 19 ms 35152 KB Output is correct
10 Correct 19 ms 35136 KB Output is correct
11 Correct 19 ms 35152 KB Output is correct
12 Correct 19 ms 34768 KB Output is correct
13 Correct 20 ms 35088 KB Output is correct
14 Correct 20 ms 35112 KB Output is correct
15 Correct 19 ms 35120 KB Output is correct
16 Correct 20 ms 35104 KB Output is correct
17 Correct 19 ms 35060 KB Output is correct
18 Correct 18 ms 35152 KB Output is correct
19 Correct 18 ms 35152 KB Output is correct
20 Correct 18 ms 35152 KB Output is correct
21 Correct 18 ms 35152 KB Output is correct
22 Correct 19 ms 35152 KB Output is correct
23 Correct 20 ms 35152 KB Output is correct
24 Correct 18 ms 35152 KB Output is correct
25 Correct 20 ms 34888 KB Output is correct
26 Correct 18 ms 35152 KB Output is correct
27 Correct 18 ms 35172 KB Output is correct
28 Correct 19 ms 35144 KB Output is correct
29 Correct 18 ms 35172 KB Output is correct
30 Correct 18 ms 35172 KB Output is correct
31 Correct 19 ms 35156 KB Output is correct
32 Correct 18 ms 35080 KB Output is correct
33 Correct 19 ms 35152 KB Output is correct
34 Correct 18 ms 35168 KB Output is correct
35 Correct 21 ms 35128 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 34896 KB Output is correct
2 Correct 19 ms 35152 KB Output is correct
3 Correct 19 ms 35092 KB Output is correct
4 Correct 19 ms 35116 KB Output is correct
5 Correct 19 ms 35152 KB Output is correct
6 Correct 18 ms 35180 KB Output is correct
7 Correct 18 ms 35052 KB Output is correct
8 Correct 18 ms 35116 KB Output is correct
9 Correct 19 ms 35152 KB Output is correct
10 Correct 19 ms 35136 KB Output is correct
11 Correct 19 ms 35152 KB Output is correct
12 Correct 19 ms 34768 KB Output is correct
13 Correct 20 ms 35088 KB Output is correct
14 Correct 20 ms 35112 KB Output is correct
15 Correct 19 ms 35120 KB Output is correct
16 Correct 20 ms 35104 KB Output is correct
17 Correct 19 ms 35060 KB Output is correct
18 Correct 18 ms 35152 KB Output is correct
19 Correct 18 ms 35152 KB Output is correct
20 Correct 18 ms 35152 KB Output is correct
21 Correct 18 ms 35152 KB Output is correct
22 Correct 19 ms 35152 KB Output is correct
23 Correct 20 ms 35152 KB Output is correct
24 Correct 18 ms 35152 KB Output is correct
25 Correct 20 ms 34888 KB Output is correct
26 Correct 18 ms 35152 KB Output is correct
27 Correct 18 ms 35172 KB Output is correct
28 Correct 19 ms 35144 KB Output is correct
29 Correct 18 ms 35172 KB Output is correct
30 Correct 18 ms 35172 KB Output is correct
31 Correct 19 ms 35156 KB Output is correct
32 Correct 18 ms 35080 KB Output is correct
33 Correct 19 ms 35152 KB Output is correct
34 Correct 18 ms 35168 KB Output is correct
35 Correct 21 ms 35128 KB Output is correct
36 Correct 60 ms 48844 KB Output is correct
37 Correct 72 ms 56644 KB Output is correct
38 Correct 69 ms 56632 KB Output is correct
39 Correct 75 ms 56644 KB Output is correct
40 Correct 74 ms 56644 KB Output is correct
41 Correct 75 ms 56652 KB Output is correct
42 Correct 79 ms 56648 KB Output is correct
43 Correct 66 ms 56632 KB Output is correct
44 Correct 68 ms 57024 KB Output is correct
45 Correct 67 ms 56648 KB Output is correct
46 Correct 75 ms 56848 KB Output is correct
47 Correct 82 ms 56608 KB Output is correct
48 Correct 81 ms 56648 KB Output is correct
49 Correct 74 ms 56648 KB Output is correct
50 Correct 64 ms 57028 KB Output is correct
51 Correct 67 ms 56660 KB Output is correct
52 Correct 75 ms 56616 KB Output is correct
53 Correct 73 ms 56604 KB Output is correct
54 Correct 73 ms 56640 KB Output is correct
55 Correct 67 ms 57032 KB Output is correct
56 Correct 67 ms 56644 KB Output is correct
57 Correct 77 ms 55924 KB Output is correct
58 Correct 72 ms 56612 KB Output is correct
59 Correct 76 ms 56640 KB Output is correct
60 Correct 71 ms 56648 KB Output is correct
61 Correct 74 ms 56684 KB Output is correct
62 Correct 73 ms 56648 KB Output is correct
63 Correct 82 ms 56648 KB Output is correct
64 Correct 68 ms 56648 KB Output is correct
65 Correct 68 ms 57040 KB Output is correct
66 Correct 66 ms 56720 KB Output is correct
67 Correct 67 ms 57048 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Incorrect 973 ms 56520 KB 74909th lines differ - on the 1st token, expected: '1', found: '2'
2 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 358 ms 39704 KB Output is correct
2 Correct 1257 ms 56616 KB Output is correct
3 Correct 1351 ms 56624 KB Output is correct
4 Correct 1402 ms 56716 KB Output is correct
5 Correct 1357 ms 56600 KB Output is correct
6 Correct 1022 ms 56676 KB Output is correct
7 Correct 1199 ms 56652 KB Output is correct
8 Correct 1183 ms 56632 KB Output is correct
9 Correct 1091 ms 57024 KB Output is correct
10 Correct 1165 ms 56676 KB Output is correct
11 Correct 1110 ms 56744 KB Output is correct
12 Correct 82 ms 56636 KB Output is correct
13 Correct 92 ms 56636 KB Output is correct
14 Correct 88 ms 56640 KB Output is correct
15 Correct 67 ms 57016 KB Output is correct
16 Correct 64 ms 56616 KB Output is correct
17 Correct 70 ms 55936 KB Output is correct
18 Correct 91 ms 56640 KB Output is correct
19 Correct 86 ms 56704 KB Output is correct
20 Correct 85 ms 56620 KB Output is correct
21 Correct 84 ms 56668 KB Output is correct
22 Correct 83 ms 56652 KB Output is correct
23 Correct 88 ms 56652 KB Output is correct
24 Correct 69 ms 56604 KB Output is correct
25 Correct 74 ms 57024 KB Output is correct
26 Correct 67 ms 56700 KB Output is correct
27 Correct 93 ms 57084 KB Output is correct
28 Correct 22 ms 35052 KB Output is correct
29 Correct 20 ms 35152 KB Output is correct
30 Correct 24 ms 35140 KB Output is correct
31 Correct 20 ms 35120 KB Output is correct
32 Correct 25 ms 35128 KB Output is correct
33 Correct 20 ms 34956 KB Output is correct
34 Correct 19 ms 35136 KB Output is correct
35 Correct 21 ms 35120 KB Output is correct
36 Correct 18 ms 35152 KB Output is correct
37 Correct 18 ms 35140 KB Output is correct
38 Correct 18 ms 35152 KB Output is correct
39 Correct 22 ms 35152 KB Output is correct
40 Correct 18 ms 35152 KB Output is correct
41 Correct 21 ms 35112 KB Output is correct
42 Correct 20 ms 35140 KB Output is correct
43 Correct 23 ms 35144 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 18 ms 34896 KB Output is correct
2 Correct 19 ms 35152 KB Output is correct
3 Correct 19 ms 35092 KB Output is correct
4 Correct 19 ms 35116 KB Output is correct
5 Correct 19 ms 35152 KB Output is correct
6 Correct 18 ms 35180 KB Output is correct
7 Correct 18 ms 35052 KB Output is correct
8 Correct 18 ms 35116 KB Output is correct
9 Correct 19 ms 35152 KB Output is correct
10 Correct 19 ms 35136 KB Output is correct
11 Correct 19 ms 35152 KB Output is correct
12 Correct 19 ms 34768 KB Output is correct
13 Correct 20 ms 35088 KB Output is correct
14 Correct 20 ms 35112 KB Output is correct
15 Correct 19 ms 35120 KB Output is correct
16 Correct 20 ms 35104 KB Output is correct
17 Correct 19 ms 35060 KB Output is correct
18 Correct 18 ms 35152 KB Output is correct
19 Correct 18 ms 35152 KB Output is correct
20 Correct 18 ms 35152 KB Output is correct
21 Correct 18 ms 35152 KB Output is correct
22 Correct 19 ms 35152 KB Output is correct
23 Correct 20 ms 35152 KB Output is correct
24 Correct 18 ms 35152 KB Output is correct
25 Correct 20 ms 34888 KB Output is correct
26 Correct 18 ms 35152 KB Output is correct
27 Correct 18 ms 35172 KB Output is correct
28 Correct 19 ms 35144 KB Output is correct
29 Correct 18 ms 35172 KB Output is correct
30 Correct 18 ms 35172 KB Output is correct
31 Correct 19 ms 35156 KB Output is correct
32 Correct 18 ms 35080 KB Output is correct
33 Correct 19 ms 35152 KB Output is correct
34 Correct 18 ms 35168 KB Output is correct
35 Correct 21 ms 35128 KB Output is correct
36 Correct 60 ms 48844 KB Output is correct
37 Correct 72 ms 56644 KB Output is correct
38 Correct 69 ms 56632 KB Output is correct
39 Correct 75 ms 56644 KB Output is correct
40 Correct 74 ms 56644 KB Output is correct
41 Correct 75 ms 56652 KB Output is correct
42 Correct 79 ms 56648 KB Output is correct
43 Correct 66 ms 56632 KB Output is correct
44 Correct 68 ms 57024 KB Output is correct
45 Correct 67 ms 56648 KB Output is correct
46 Correct 75 ms 56848 KB Output is correct
47 Correct 82 ms 56608 KB Output is correct
48 Correct 81 ms 56648 KB Output is correct
49 Correct 74 ms 56648 KB Output is correct
50 Correct 64 ms 57028 KB Output is correct
51 Correct 67 ms 56660 KB Output is correct
52 Correct 75 ms 56616 KB Output is correct
53 Correct 73 ms 56604 KB Output is correct
54 Correct 73 ms 56640 KB Output is correct
55 Correct 67 ms 57032 KB Output is correct
56 Correct 67 ms 56644 KB Output is correct
57 Correct 77 ms 55924 KB Output is correct
58 Correct 72 ms 56612 KB Output is correct
59 Correct 76 ms 56640 KB Output is correct
60 Correct 71 ms 56648 KB Output is correct
61 Correct 74 ms 56684 KB Output is correct
62 Correct 73 ms 56648 KB Output is correct
63 Correct 82 ms 56648 KB Output is correct
64 Correct 68 ms 56648 KB Output is correct
65 Correct 68 ms 57040 KB Output is correct
66 Correct 66 ms 56720 KB Output is correct
67 Correct 67 ms 57048 KB Output is correct
68 Incorrect 973 ms 56520 KB 74909th lines differ - on the 1st token, expected: '1', found: '2'
69 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Incorrect 532 ms 47564 KB 85th lines differ - on the 1st token, expected: '2', found: '1'
2 Halted 0 ms 0 KB -