Submission #755142

# Submission time Handle Problem Language Result Execution time Memory
755142 2023-06-09T12:44:15 Z boris_mihov Radio Towers (IOI22_towers) C++17
54 / 100
2203 ms 57192 KB
#include <algorithm>
#include <iostream>
#include <numeric>
#include <cassert>
#include <vector>
#include <stack>

typedef long long llong;
const int MAXLOG = 20 + 5;
const int MAXN = 100000 + 10;
const int INF  = 1e9;

int n;
struct MST
{
    std::vector <int> tree[4*MAXN];
    void build(int l, int r, int node, int vals[])
    {
        if (l == r)
        {
            tree[node].push_back(vals[l]);
            return;
        }

        int mid = (l + r) / 2;
        build(l, mid, 2*node, vals);
        build(mid + 1, r, 2*node + 1, vals);
        tree[node].reserve(r - l + 1);

        int lPtr = 0, rPtr = 0;
        for (int i = l ; i <= r ; ++i)
        {
            if (lPtr == tree[2*node].size())
            {
                tree[node].push_back(tree[2*node + 1][rPtr++]);
                continue;
            }

            if (rPtr == tree[2*node + 1].size())
            {
                tree[node].push_back(tree[2*node][lPtr++]);
                continue;
            }

            if (tree[2*node][lPtr] < tree[2*node + 1][rPtr])
            {
                tree[node].push_back(tree[2*node][lPtr++]);
            } else
            {
                tree[node].push_back(tree[2*node + 1][rPtr++]);
            }
        }
    }

    int binaryCount(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] <= val) l = mid;
            else r = mid;
        }

        return r;
    }

    int binaryFirst(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] < val) l = mid;
            else r = mid;
        }

        return (r == tree[node].size() ? INF : tree[node][r]);
    }

    int binaryLast(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] <= val) l = mid;
            else r = mid;
        }

        return (l == -1 ? 0 : tree[node][l]);
    }

    int queryCount(int l, int r, int node, int queryL, int queryR, int queryValL, int queryValR)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryCount(node, queryValR) - binaryCount(node, queryValL - 1);
        }

        int res = 0;
        int mid = (l + r) / 2;
        if (queryL <= mid) res += queryCount(l, mid, 2*node, queryL, queryR, queryValL, queryValR);
        if (mid + 1 <= queryR) res += queryCount(mid + 1, r, 2*node + 1, queryL, queryR, queryValL, queryValR);
        return res;
    }

    int queryFirst(int l, int r, int node, int queryL, int queryR, int queryVal)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryFirst(node, queryVal);
        }

        int res = INF;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = std::min(res, queryFirst(l, mid, 2*node, queryL, queryR, queryVal));
        if (mid + 1 <= queryR) res = std::min(res, queryFirst(mid + 1, r, 2*node + 1, queryL, queryR, queryVal));
        return res;
    }

    int queryLast(int l, int r, int node, int queryL, int queryR, int queryVal)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryLast(node, queryVal);
        }

        int res = 0;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = std::max(res, queryLast(l, mid, 2*node, queryL, queryR, queryVal));
        if (mid + 1 <= queryR) res = std::max(res, queryLast(mid + 1, r, 2*node + 1, queryL, queryR, queryVal));
        return res;
    }

    void build(int vals[])
    {
        build(1, n, 1, vals);
    }

    int queryCount(int to, int l, int r)
    {
        return queryCount(1, n, 1, 1, to, l, r);
    }

    int queryFirst(int to, int l)
    {
        return queryFirst(1, n, 1, 1, to, l);
    }

    int queryLast(int to, int r)
    {
        return queryLast(1, n, 1, 1, to, r);
    }
};

MST left, right;
struct SparseMAX
{
    int sparseMAX[MAXLOG][MAXN];
    int vals[MAXN];
    int lg[MAXN];

    int cmp(int x, int y)
    {
        if (vals[x] > vals[y]) return x;
        return y;
    }

    void build(int _vals[])
    {
        for (int i = 1 ; i <= n ; ++i)
        {
            sparseMAX[0][i] = i;
            vals[i] = _vals[i];
        }

        for (int log = 1 ; (1 << log) <= n ; ++log)
        {
            for (int i = 1 ; i + (1 << log) - 1 <= n ; ++i)
            {
                sparseMAX[log][i] = cmp(sparseMAX[log - 1][i], sparseMAX[log - 1][i + (1 << log - 1)]);
            }
        }
    
        for (int i = 1 ; i <= n ; ++i)
        {
            lg[i] = lg[i - 1];
            if ((1 << lg[i] + 1) < i)
            {
                lg[i]++;
            }
        }
    }

    int findMAX(int l, int r)
    {
        int log = lg[r - l + 1];
        return vals[cmp(sparseMAX[log][l], sparseMAX[log][r - (1 << log) + 1])];
    }

    int findIDX(int l, int r)
    {
        int log = lg[r - l + 1];
        return cmp(sparseMAX[log][l], sparseMAX[log][r - (1 << log) + 1]);
    }
};

struct SegmentTree
{
    struct Node
    {
        int max;
        int min;
        int maxDiffL;
        int maxDiffR;
        
        Node()
        {
            max = -1;
        }
    };

    Node combine(Node left, Node right)
    {
        if (left.max == -1)
        {
            return right;
        }

        Node res;
        res.min = std::min(left.min, right.min);
        res.max = std::max(left.max, right.max);
        res.maxDiffL = std::max(left.maxDiffL, right.maxDiffL);
        res.maxDiffR = std::max(left.maxDiffR, right.maxDiffR);
        res.maxDiffL = std::max(res.maxDiffL, right.max - left.min);
        res.maxDiffR = std::max(res.maxDiffR, left.max - right.min);
        return res;
    }

    Node tree[4*MAXN];
    void build(int l, int r, int node, int vals[])
    {
        if (l == r)
        {
            tree[node].min = vals[l];
            tree[node].max = vals[l];
            tree[node].maxDiffL = 0;
            tree[node].maxDiffR = 0;
            return;
        }

        int mid = (l + r) / 2;
        build(l, mid, 2*node, vals);
        build(mid + 1, r, 2*node + 1, vals);
        tree[node] = combine(tree[2*node], tree[2*node + 1]);
    }    

    Node query(int l, int r, int node, int queryL, int queryR)
    {
        if (queryL <= l && r <= queryR)
        {
            return tree[node];
        }

        Node res;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = combine(res, query(l, mid, 2*node, queryL, queryR));
        if (mid + 1 <= queryR) res = combine(res, query(mid + 1, r, 2*node + 1, queryL, queryR));
        return res;
    }

    void build(int vals[])
    {
        build(1, n, 1, vals);
    }

    int queryL(int l, int r)
    {
        return query(1, n, 1, l, r).maxDiffL;
    }

    int queryR(int l, int r)
    {
        return query(1, n, 1, l, r).maxDiffR;
    }
};

int a[MAXN];
int b[MAXN];
int c[MAXN];
int d[MAXN];
int h[MAXN];
int perm[MAXN];
int cost[MAXN];
SparseMAX sparseMAX;
SegmentTree maxDiff;
std::stack <int> st;
std::vector <int> v;
MST tree;

void init(int N, std::vector <int> H) 
{
    n = N;
    for (int i = 1 ; i <= n ; ++i)
    {
        h[i] = H[i - 1];
    }

    sparseMAX.build(h);
    st.push(0);

    for (int i = 1 ; i <= n ; ++i)
    {
        while (h[st.top()] > h[i])
        {
            st.pop();
        }

        a[i] = st.top();
        st.push(i);
    }


    while (!st.empty())
    {
        st.pop();
    }

    st.push(n + 1);
    for (int i = n ; i >= 1 ; --i)
    {
        while (h[st.top()] > h[i])
        {
            st.pop();
        }

        c[i] = st.top();
        st.push(i);
    }

    for (int i = 1 ; i <= n ; ++i)
    {
        if (a[i] == i - 1)
        {
            b[i] = 0;
        } else
        {
            b[i] = sparseMAX.findMAX(a[i] + 1, i - 1) - h[i];
        }

        if (c[i] == i + 1)
        {
            d[i] = 0;
        } else
        {
            d[i] = sparseMAX.findMAX(i + 1, c[i] - 1) - h[i];
        }
    }

    for (int i = 1 ; i <= n ; ++i)
    {
        cost[i] = INF; 
        if (a[i] > 0) cost[i] = std::min(cost[i], b[i]);
        if (c[i] < n + 1) cost[i] = std::min(cost[i], d[i]);
    }

    std::iota(perm + 1, perm + 1 + n, 1);
    std::sort(perm + 1, perm + 1 + n, [&](const int &x, const int &y)
    {
        return cost[x] > cost[y];
    });

    tree.build(perm);
    maxDiff.build(h);
}

int max_towers(int L, int R, int D) 
{
    L++; R++;
    int l = 0, r = n + 1, mid;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (cost[perm[mid]] >= D) l = mid;
        else r = mid;
    }

    if (l == 0)
    {
        return 1;
    }

    int cnt = tree.queryCount(l, L, R);
    if (cnt == 0)
    {
        l = L;
        r = R;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (maxDiff.queryL(l, mid) >= D && maxDiff.queryR(mid, r) >= D)
            {
                return 2;
            }

            if (maxDiff.queryL(l, mid) >= D) l = mid;
            else r = mid;
        }

        return 1;
    }

    int first = tree.queryFirst(l, L);
    int last = tree.queryLast(l, R);

    l = L, r = first;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (sparseMAX.findMAX(mid, first - 1) < h[first] + D) r = mid;
        else l = mid;
    }

    if (maxDiff.queryL(L, l) >= D)
    {
        cnt++;
    }

    l = last, r = R;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (sparseMAX.findMAX(last + 1, mid) < h[last] + D) l = mid;
        else r = mid;
    }

    if (maxDiff.queryR(r, R) >= D)
    {
        cnt++;
    }

    return cnt;
}

Compilation message

towers.cpp: In member function 'void MST::build(int, int, int, int*)':
towers.cpp:33:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   33 |             if (lPtr == tree[2*node].size())
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~
towers.cpp:39:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   39 |             if (rPtr == tree[2*node + 1].size())
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp: In member function 'int MST::binaryFirst(int, int)':
towers.cpp:78:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   78 |         return (r == tree[node].size() ? INF : tree[node][r]);
      |                 ~~^~~~~~~~~~~~~~~~~~~~
towers.cpp: In member function 'void SparseMAX::build(int*)':
towers.cpp:182:97: warning: suggest parentheses around '-' inside '<<' [-Wparentheses]
  182 |                 sparseMAX[log][i] = cmp(sparseMAX[log - 1][i], sparseMAX[log - 1][i + (1 << log - 1)]);
      |                                                                                             ~~~~^~~
towers.cpp:189:29: warning: suggest parentheses around '+' inside '<<' [-Wparentheses]
  189 |             if ((1 << lg[i] + 1) < i)
      |                       ~~~~~~^~~
# Verdict Execution time Memory Grader output
1 Incorrect 813 ms 47592 KB 85th lines differ - on the 1st token, expected: '2', found: '1'
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 20 ms 34760 KB Output is correct
2 Correct 23 ms 35136 KB Output is correct
3 Correct 19 ms 35152 KB Output is correct
4 Correct 24 ms 35156 KB Output is correct
5 Correct 19 ms 35152 KB Output is correct
6 Correct 20 ms 35144 KB Output is correct
7 Correct 21 ms 35148 KB Output is correct
8 Correct 20 ms 35120 KB Output is correct
9 Correct 20 ms 35084 KB Output is correct
10 Correct 20 ms 35152 KB Output is correct
11 Correct 21 ms 35192 KB Output is correct
12 Correct 24 ms 34768 KB Output is correct
13 Correct 22 ms 35172 KB Output is correct
14 Correct 19 ms 35228 KB Output is correct
15 Correct 20 ms 35136 KB Output is correct
16 Correct 19 ms 35152 KB Output is correct
17 Correct 23 ms 35168 KB Output is correct
18 Correct 19 ms 35168 KB Output is correct
19 Correct 19 ms 35152 KB Output is correct
20 Correct 22 ms 35068 KB Output is correct
21 Correct 23 ms 35116 KB Output is correct
22 Correct 18 ms 35104 KB Output is correct
23 Correct 23 ms 35152 KB Output is correct
24 Correct 18 ms 35136 KB Output is correct
25 Correct 18 ms 34896 KB Output is correct
26 Correct 20 ms 35124 KB Output is correct
27 Correct 24 ms 35064 KB Output is correct
28 Correct 20 ms 35112 KB Output is correct
29 Correct 20 ms 35152 KB Output is correct
30 Correct 18 ms 35136 KB Output is correct
31 Correct 22 ms 35152 KB Output is correct
32 Correct 25 ms 35144 KB Output is correct
33 Correct 19 ms 35112 KB Output is correct
34 Correct 20 ms 35080 KB Output is correct
35 Correct 18 ms 35152 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 34760 KB Output is correct
2 Correct 23 ms 35136 KB Output is correct
3 Correct 19 ms 35152 KB Output is correct
4 Correct 24 ms 35156 KB Output is correct
5 Correct 19 ms 35152 KB Output is correct
6 Correct 20 ms 35144 KB Output is correct
7 Correct 21 ms 35148 KB Output is correct
8 Correct 20 ms 35120 KB Output is correct
9 Correct 20 ms 35084 KB Output is correct
10 Correct 20 ms 35152 KB Output is correct
11 Correct 21 ms 35192 KB Output is correct
12 Correct 24 ms 34768 KB Output is correct
13 Correct 22 ms 35172 KB Output is correct
14 Correct 19 ms 35228 KB Output is correct
15 Correct 20 ms 35136 KB Output is correct
16 Correct 19 ms 35152 KB Output is correct
17 Correct 23 ms 35168 KB Output is correct
18 Correct 19 ms 35168 KB Output is correct
19 Correct 19 ms 35152 KB Output is correct
20 Correct 22 ms 35068 KB Output is correct
21 Correct 23 ms 35116 KB Output is correct
22 Correct 18 ms 35104 KB Output is correct
23 Correct 23 ms 35152 KB Output is correct
24 Correct 18 ms 35136 KB Output is correct
25 Correct 18 ms 34896 KB Output is correct
26 Correct 20 ms 35124 KB Output is correct
27 Correct 24 ms 35064 KB Output is correct
28 Correct 20 ms 35112 KB Output is correct
29 Correct 20 ms 35152 KB Output is correct
30 Correct 18 ms 35136 KB Output is correct
31 Correct 22 ms 35152 KB Output is correct
32 Correct 25 ms 35144 KB Output is correct
33 Correct 19 ms 35112 KB Output is correct
34 Correct 20 ms 35080 KB Output is correct
35 Correct 18 ms 35152 KB Output is correct
36 Correct 51 ms 48808 KB Output is correct
37 Correct 77 ms 56696 KB Output is correct
38 Correct 96 ms 56668 KB Output is correct
39 Correct 76 ms 56632 KB Output is correct
40 Correct 74 ms 56640 KB Output is correct
41 Correct 82 ms 56680 KB Output is correct
42 Correct 100 ms 56676 KB Output is correct
43 Correct 71 ms 56648 KB Output is correct
44 Correct 71 ms 57192 KB Output is correct
45 Correct 82 ms 56620 KB Output is correct
46 Correct 84 ms 56964 KB Output is correct
47 Correct 96 ms 56612 KB Output is correct
48 Correct 88 ms 56608 KB Output is correct
49 Correct 91 ms 56668 KB Output is correct
50 Correct 82 ms 57024 KB Output is correct
51 Correct 71 ms 56640 KB Output is correct
52 Correct 96 ms 56620 KB Output is correct
53 Correct 93 ms 56668 KB Output is correct
54 Correct 81 ms 56656 KB Output is correct
55 Correct 82 ms 57028 KB Output is correct
56 Correct 64 ms 56648 KB Output is correct
57 Correct 80 ms 56004 KB Output is correct
58 Correct 79 ms 56688 KB Output is correct
59 Correct 84 ms 56676 KB Output is correct
60 Correct 91 ms 56624 KB Output is correct
61 Correct 101 ms 56644 KB Output is correct
62 Correct 88 ms 56708 KB Output is correct
63 Correct 79 ms 56632 KB Output is correct
64 Correct 67 ms 56716 KB Output is correct
65 Correct 66 ms 57040 KB Output is correct
66 Correct 77 ms 56628 KB Output is correct
67 Correct 66 ms 57076 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1213 ms 56520 KB Output is correct
2 Correct 1535 ms 56636 KB Output is correct
3 Correct 1470 ms 56628 KB Output is correct
4 Correct 1103 ms 56660 KB Output is correct
5 Correct 1198 ms 56668 KB Output is correct
6 Correct 1108 ms 56712 KB Output is correct
7 Correct 1514 ms 56592 KB Output is correct
8 Correct 2119 ms 56656 KB Output is correct
9 Correct 1656 ms 57032 KB Output is correct
10 Correct 1503 ms 56640 KB Output is correct
11 Correct 1359 ms 56792 KB Output is correct
12 Correct 2203 ms 56628 KB Output is correct
13 Correct 1661 ms 57004 KB Output is correct
14 Correct 18 ms 34732 KB Output is correct
15 Correct 19 ms 35152 KB Output is correct
16 Correct 20 ms 35152 KB Output is correct
17 Correct 87 ms 56652 KB Output is correct
18 Correct 74 ms 56648 KB Output is correct
19 Correct 73 ms 56600 KB Output is correct
20 Correct 70 ms 57128 KB Output is correct
21 Correct 72 ms 56616 KB Output is correct
22 Correct 81 ms 56620 KB Output is correct
23 Correct 73 ms 56644 KB Output is correct
24 Correct 71 ms 56720 KB Output is correct
25 Correct 67 ms 57032 KB Output is correct
26 Correct 72 ms 56600 KB Output is correct
27 Correct 19 ms 35152 KB Output is correct
28 Correct 20 ms 35152 KB Output is correct
29 Correct 19 ms 35152 KB Output is correct
30 Correct 20 ms 35148 KB Output is correct
31 Correct 19 ms 35072 KB Output is correct
32 Correct 19 ms 35152 KB Output is correct
33 Correct 19 ms 35060 KB Output is correct
34 Correct 25 ms 35124 KB Output is correct
35 Correct 22 ms 35152 KB Output is correct
36 Correct 20 ms 35152 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 386 ms 39700 KB Output is correct
2 Correct 1170 ms 56608 KB Output is correct
3 Correct 1279 ms 56628 KB Output is correct
4 Correct 1247 ms 56644 KB Output is correct
5 Correct 1101 ms 56636 KB Output is correct
6 Correct 1221 ms 56792 KB Output is correct
7 Correct 1129 ms 56644 KB Output is correct
8 Correct 1107 ms 56648 KB Output is correct
9 Correct 1018 ms 57036 KB Output is correct
10 Correct 998 ms 56624 KB Output is correct
11 Correct 1056 ms 56776 KB Output is correct
12 Correct 70 ms 56676 KB Output is correct
13 Correct 80 ms 56652 KB Output is correct
14 Correct 79 ms 56592 KB Output is correct
15 Correct 60 ms 57144 KB Output is correct
16 Correct 63 ms 56704 KB Output is correct
17 Correct 70 ms 55928 KB Output is correct
18 Correct 71 ms 56776 KB Output is correct
19 Correct 79 ms 56672 KB Output is correct
20 Correct 78 ms 56624 KB Output is correct
21 Correct 87 ms 56648 KB Output is correct
22 Correct 72 ms 56608 KB Output is correct
23 Correct 73 ms 56648 KB Output is correct
24 Correct 64 ms 56648 KB Output is correct
25 Correct 68 ms 57036 KB Output is correct
26 Correct 65 ms 56620 KB Output is correct
27 Correct 68 ms 57160 KB Output is correct
28 Correct 19 ms 35132 KB Output is correct
29 Correct 20 ms 35136 KB Output is correct
30 Correct 20 ms 35152 KB Output is correct
31 Correct 19 ms 35152 KB Output is correct
32 Correct 19 ms 35124 KB Output is correct
33 Correct 19 ms 34896 KB Output is correct
34 Correct 20 ms 35152 KB Output is correct
35 Correct 19 ms 35152 KB Output is correct
36 Correct 19 ms 35140 KB Output is correct
37 Correct 21 ms 35152 KB Output is correct
38 Correct 19 ms 35152 KB Output is correct
39 Correct 19 ms 35152 KB Output is correct
40 Correct 20 ms 35120 KB Output is correct
41 Correct 21 ms 35128 KB Output is correct
42 Correct 19 ms 35168 KB Output is correct
43 Correct 18 ms 35092 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 34760 KB Output is correct
2 Correct 23 ms 35136 KB Output is correct
3 Correct 19 ms 35152 KB Output is correct
4 Correct 24 ms 35156 KB Output is correct
5 Correct 19 ms 35152 KB Output is correct
6 Correct 20 ms 35144 KB Output is correct
7 Correct 21 ms 35148 KB Output is correct
8 Correct 20 ms 35120 KB Output is correct
9 Correct 20 ms 35084 KB Output is correct
10 Correct 20 ms 35152 KB Output is correct
11 Correct 21 ms 35192 KB Output is correct
12 Correct 24 ms 34768 KB Output is correct
13 Correct 22 ms 35172 KB Output is correct
14 Correct 19 ms 35228 KB Output is correct
15 Correct 20 ms 35136 KB Output is correct
16 Correct 19 ms 35152 KB Output is correct
17 Correct 23 ms 35168 KB Output is correct
18 Correct 19 ms 35168 KB Output is correct
19 Correct 19 ms 35152 KB Output is correct
20 Correct 22 ms 35068 KB Output is correct
21 Correct 23 ms 35116 KB Output is correct
22 Correct 18 ms 35104 KB Output is correct
23 Correct 23 ms 35152 KB Output is correct
24 Correct 18 ms 35136 KB Output is correct
25 Correct 18 ms 34896 KB Output is correct
26 Correct 20 ms 35124 KB Output is correct
27 Correct 24 ms 35064 KB Output is correct
28 Correct 20 ms 35112 KB Output is correct
29 Correct 20 ms 35152 KB Output is correct
30 Correct 18 ms 35136 KB Output is correct
31 Correct 22 ms 35152 KB Output is correct
32 Correct 25 ms 35144 KB Output is correct
33 Correct 19 ms 35112 KB Output is correct
34 Correct 20 ms 35080 KB Output is correct
35 Correct 18 ms 35152 KB Output is correct
36 Correct 51 ms 48808 KB Output is correct
37 Correct 77 ms 56696 KB Output is correct
38 Correct 96 ms 56668 KB Output is correct
39 Correct 76 ms 56632 KB Output is correct
40 Correct 74 ms 56640 KB Output is correct
41 Correct 82 ms 56680 KB Output is correct
42 Correct 100 ms 56676 KB Output is correct
43 Correct 71 ms 56648 KB Output is correct
44 Correct 71 ms 57192 KB Output is correct
45 Correct 82 ms 56620 KB Output is correct
46 Correct 84 ms 56964 KB Output is correct
47 Correct 96 ms 56612 KB Output is correct
48 Correct 88 ms 56608 KB Output is correct
49 Correct 91 ms 56668 KB Output is correct
50 Correct 82 ms 57024 KB Output is correct
51 Correct 71 ms 56640 KB Output is correct
52 Correct 96 ms 56620 KB Output is correct
53 Correct 93 ms 56668 KB Output is correct
54 Correct 81 ms 56656 KB Output is correct
55 Correct 82 ms 57028 KB Output is correct
56 Correct 64 ms 56648 KB Output is correct
57 Correct 80 ms 56004 KB Output is correct
58 Correct 79 ms 56688 KB Output is correct
59 Correct 84 ms 56676 KB Output is correct
60 Correct 91 ms 56624 KB Output is correct
61 Correct 101 ms 56644 KB Output is correct
62 Correct 88 ms 56708 KB Output is correct
63 Correct 79 ms 56632 KB Output is correct
64 Correct 67 ms 56716 KB Output is correct
65 Correct 66 ms 57040 KB Output is correct
66 Correct 77 ms 56628 KB Output is correct
67 Correct 66 ms 57076 KB Output is correct
68 Correct 1213 ms 56520 KB Output is correct
69 Correct 1535 ms 56636 KB Output is correct
70 Correct 1470 ms 56628 KB Output is correct
71 Correct 1103 ms 56660 KB Output is correct
72 Correct 1198 ms 56668 KB Output is correct
73 Correct 1108 ms 56712 KB Output is correct
74 Correct 1514 ms 56592 KB Output is correct
75 Correct 2119 ms 56656 KB Output is correct
76 Correct 1656 ms 57032 KB Output is correct
77 Correct 1503 ms 56640 KB Output is correct
78 Correct 1359 ms 56792 KB Output is correct
79 Correct 2203 ms 56628 KB Output is correct
80 Correct 1661 ms 57004 KB Output is correct
81 Correct 18 ms 34732 KB Output is correct
82 Correct 19 ms 35152 KB Output is correct
83 Correct 20 ms 35152 KB Output is correct
84 Correct 87 ms 56652 KB Output is correct
85 Correct 74 ms 56648 KB Output is correct
86 Correct 73 ms 56600 KB Output is correct
87 Correct 70 ms 57128 KB Output is correct
88 Correct 72 ms 56616 KB Output is correct
89 Correct 81 ms 56620 KB Output is correct
90 Correct 73 ms 56644 KB Output is correct
91 Correct 71 ms 56720 KB Output is correct
92 Correct 67 ms 57032 KB Output is correct
93 Correct 72 ms 56600 KB Output is correct
94 Correct 19 ms 35152 KB Output is correct
95 Correct 20 ms 35152 KB Output is correct
96 Correct 19 ms 35152 KB Output is correct
97 Correct 20 ms 35148 KB Output is correct
98 Correct 19 ms 35072 KB Output is correct
99 Correct 19 ms 35152 KB Output is correct
100 Correct 19 ms 35060 KB Output is correct
101 Correct 25 ms 35124 KB Output is correct
102 Correct 22 ms 35152 KB Output is correct
103 Correct 20 ms 35152 KB Output is correct
104 Correct 1203 ms 54172 KB Output is correct
105 Correct 1195 ms 56648 KB Output is correct
106 Correct 1227 ms 56628 KB Output is correct
107 Correct 1132 ms 56632 KB Output is correct
108 Incorrect 1212 ms 56608 KB 19976th lines differ - on the 1st token, expected: '2', found: '1'
109 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 813 ms 47592 KB 85th lines differ - on the 1st token, expected: '2', found: '1'
2 Halted 0 ms 0 KB -