Submission #753058

# Submission time Handle Problem Language Result Execution time Memory
753058 2023-06-04T14:03:24 Z I_love_Hoang_Yen Sequence (APIO23_sequence) C++17
60 / 100
1405 ms 61372 KB
#include "sequence.h"
#include <bits/stdc++.h>
#define SZ(s) ((int) ((s).size()))
using namespace std;
 
bool is_sub_3(const std::vector<int> a) {
    auto mit = max_element(a.begin(), a.end());
    return std::is_sorted(a.begin(), mit)
        && std::is_sorted(mit, a.end(), std::greater<int>());
}
 
int len(const std::pair<int,int>& p) {
    return p.second - p.first + 1;
}
bool can_be_median(int cnt_less, int cnt_equal, int cnt_greater) {
    return cnt_equal + cnt_less >= cnt_greater;
}
 
int sub3(const vector<int>& a) {
    int n = SZ(a);
    unordered_map<int, vector<pair<int,int>>> pos;
    int l = 0;
    while (l < n) {
        int r = l;
        while (r < n && a[l] == a[r]) ++r;
        pos[a[l]].emplace_back(l, r-1);
        l = r;
    }
    int res = 0;
    for (const auto& [val, lrs] : pos) {
        // only 1 segment
        for (const auto& lr : lrs) res = max(res, len(lr));
 
        // 2 segments
        if (SZ(lrs) < 2) continue;
        assert(SZ(lrs) == 2);
        int cnt_equal = len(lrs[0]) + len(lrs[1]);
        int cnt_greater = len({lrs[0].second + 1, lrs[1].first - 1});
        int cnt_less = len({0, lrs[0].first - 1}) + len({lrs[1].second + 1, n-1});
        if (can_be_median(cnt_less, cnt_equal, cnt_greater)) {
            res = max(res, cnt_equal);
        }
    }
    return res;
}
 
// SegTree, copied from AtCoder library {{{
// AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html
//
// Notes:
// - Index of elements from 0 -> n-1
// - Range queries are [l, r-1]
//
// Tested:
// - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j
// - https://oj.vnoi.info/problem/gss
// - https://oj.vnoi.info/problem/nklineup
// - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr
// - https://judge.yosupo.jp/problem/point_add_range_sum
// - https://judge.yosupo.jp/problem/point_set_range_composite
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}
 
template<
    class T,  // data type for nodes
    T (*op) (T, T),  // operator to combine 2 nodes
    T (*e)() // identity element
>
struct SegTree {
    SegTree() : SegTree(0) {}
    explicit SegTree(int n) : SegTree(vector<T> (n, e())) {}
    explicit SegTree(const vector<T>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1<<log;
        d = vector<T> (2*size, e());
 
        for (int i = 0; i < _n; i++) d[size+i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }
 
    // 0 <= p < n
    void set(int p, T x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }
 
    // 0 <= p < n
    T get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }
 
    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    T prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        T sml = e(), smr = e();
        l += size;
        r += size;
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }
 
    T all_prod() const {
        return d[1];
    }
 
    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*f)(T)> int max_right(int l) const {
        return max_right(l, [](T x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        T sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }
 
    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*f)(T)> int min_left(int r) const {
        return min_left(r, [](T x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        T sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }
 
private:
    int _n, size, log;
    vector<T> d;
 
    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
};
// }}}
// SegTree examples {{{
// Examples: Commonly used SegTree ops: max / min / sum
struct MaxSegTreeOp {
    static int op(int x, int y) {
        return max(x, y);
    }
    static int e() {
        return INT_MIN;
    }
};
 
struct MinSegTreeOp {
    static int op(int x, int y) {
        return min(x, y);
    }
    static int e() {
        return INT_MAX;
    }
};
 
struct SumSegTreeOp {
    static long long op(long long x, long long y) {
        return x + y;
    }
    static long long e() {
        return 0;
    }
};
 
// using STMax = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e>;
// using STMin = SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e>;
// using STSum = SegTree<int, SumSegTreeOp::op, SumSegTreeOp::e>;
// }}}
// Lazy Segment Tree, copied from AtCoder {{{
// Source: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Doc: https://atcoder.github.io/ac-library/master/document_en/lazysegtree.html
//
// Notes:
// - Index of elements from 0
// - Range queries are [l, r-1]
// - composition(f, g) should return f(g())
//
// Tested:
// - https://oj.vnoi.info/problem/qmax2
// - https://oj.vnoi.info/problem/lites
// - (range set, add, mult, sum) https://oj.vnoi.info/problem/segtree_itmix
// - (range add (i-L)*A + B, sum) https://oj.vnoi.info/problem/segtree_itladder
// - https://atcoder.jp/contests/practice2/tasks/practice2_l
// - https://judge.yosupo.jp/problem/range_affine_range_sum

template<
    class S,                 // node data type
    S (*op) (S, S),          // combine 2 nodes
    S (*e) (),               // identity element
    class F,                 // lazy propagation tag
    S (*mapping) (F, S),     // apply tag F on a node
    F (*composition) (F, F), // combine 2 tags
    F (*id)()                // identity tag
>
struct LazySegTree {
    LazySegTree() : LazySegTree(0) {}
    explicit LazySegTree(int n) : LazySegTree(vector<S>(n, e())) {}
    explicit LazySegTree(const vector<S>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    // 0 <= p < n
    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // 0 <= p < n
    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() {
        return d[1];
    }

    // 0 <= p < n
    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // Apply f on all elements in range [l, r-1]
    // 0 <= l <= r <= n
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }


private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;

    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2*k, lz[k]);
        all_apply(2*k+1, lz[k]);
        lz[k] = id();
    }
};
// }}}
 
int sub4(int n, const std::vector<int>& a) {
    int res = 0;
    int ln = *max_element(a.begin(), a.end());
    for (int median = 0; median <= ln; ++median) {
        vector<int> cnt_less(n, 0);
        vector<int> cnt_equal(n, 0);
        vector<int> cnt_greater(n, 0);
        for (int i = 0; i < n; ++i) {
            cnt_less[i] = a[i] < median;
            cnt_equal[i] = a[i] == median;
            cnt_greater[i] = a[i] > median;
        }
        std::partial_sum(cnt_less.begin(), cnt_less.end(), cnt_less.begin());
        std::partial_sum(cnt_equal.begin(), cnt_equal.end(), cnt_equal.begin());
        std::partial_sum(cnt_greater.begin(), cnt_greater.end(), cnt_greater.begin());
 
        //    cnt_less[r]   + cnt_equal[r]   - cnt_greater[r]
        // >= cnt_less[l-1] + cnt_equal[l-1] - cnt_greater[l-1]
        //
        //    cnt_less[r]   - cnt_equal[r]   - cnt_greater[r]
        //  < cnt_less[l-1] - cnt_equal[l-1] - cnt_greater[l-1]
        //
        //  l < r
        vector<vector<pair<int,int>>> f1_at(n*2 + 1);
        for (int i = n-1; i >= 0; --i) {
            // add n so that everything >= 0
            int f1 = cnt_less[i] + cnt_equal[i] - cnt_greater[i] + n;
            int f2 = cnt_less[i] - cnt_equal[i] - cnt_greater[i] + n;
            f1_at[f1].emplace_back(i, f2);
        }
        f1_at[n].emplace_back(-1, n);
 
        SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> st(2*n + 1);
        for (int f1 = 2*n; f1 >= 0; --f1) {
            // f1(r) >= f1(l-1) && f2(r) < f2(l-1)
            for (const auto& [i, f2] : f1_at[f1]) {
                // l = i + 1
                int max_r = st.prod(0, f2 + 1);
                if (max_r > i) {
                    res = max(res, cnt_equal[max_r] - (i >= 0 ? cnt_equal[i] : 0));
                }
                // r = i
                st.set(f2, max(st.get(f2), i));
            }
        }
    }
    return res;
}

using F = int;
int mapping(F f, int s) {
    return f + s;
}
F composition(F f, F g) {
    return f + g;
}
F id() { return 0; }

bool can(int n, int eq, const vector<int>& a, const vector<vector<int>>& ids) {
    int ln = *max_element(a.begin(), a.end());
    LazySegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e, F, mapping, composition, id> st_max(n + 1);
    LazySegTree<int, MinSegTreeOp::op, MinSegTreeOp::e, F, mapping, composition, id> st_min(n + 1);
    st_max.set(0, 0);
    st_min.set(0, 0);
 
    for (int median = 0; median <= ln; median++) {
        if (median == 0) {
            for (int i = 1; i <= n; ++i) {
                st_max.set(i, i);
                st_min.set(i, i);
            }
        } else {
            // greater is affected?
            for (int i : ids[median]) {
                // previously: greater = 1, now: greater = 0
                st_max.apply(i, n+1, -1);
                st_min.apply(i, n+1, -1);
            }
            // less is affected?
            for (int i : ids[median-1]) {
                // previously: less = 0, now: less = 1
                st_max.apply(i, n+1, -1);
                st_min.apply(i, n+1, -1);
            }
        }
 
        if (SZ(ids[median]) < eq) continue;
        for (int ix = 0, iy = eq-1; iy < SZ(ids[median]); ++ix, ++iy) {
            int x = ids[median][ix];
            int y = ids[median][iy];
 
            // find [l, r]:
            // - l <= x < y <= r
            // - less + eq >= greater
            // - greater + eq >= less
            // - eq >= greater - less >= -eq
            // - eq >= (greater(r) - less(r)) - (greater(l-1) - less(l-1)) >= -eq
 
            int max_val = st_max.prod(y, n+1) - st_min.prod(0, x);
            int min_val = st_min.prod(y, n+1) - st_max.prod(0, x);
 
            // [-eq, eq] and [min_val, max_val] intersects
            if (min_val <= eq && max_val >= -eq) return true;
        }
    }
    return false;
}

int sub5(int n, std::vector<int> a) {
    // ids from 1
    a.insert(a.begin(), 0);
 
    vector<vector<int>> ids(n + 1);
    for (int i = 1; i <= n; ++i) {
        ids[a[i]].push_back(i);
    }
 
    int max_freq = 0;
    for (int i = 1; i <= n; ++i) {
        max_freq = max(max_freq, SZ(ids[i]));
    }
    int left = 1, right = max_freq, res = 1;
    while (left <= right) {
        int mid = (left + right) / 2;
        if (can(n, mid, a, ids)) {
            res = mid;
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return res;
}
 
int sequence(int n, std::vector<int> a) {
    if (is_sub_3(a)) return sub3(a);
    if (n <= 2000 || *max_element(a.begin(), a.end()) <= 3) return sub4(n, a);
    return sub5(n, a);
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
13 Correct 504 ms 516 KB Output is correct
14 Correct 488 ms 552 KB Output is correct
15 Correct 12 ms 468 KB Output is correct
16 Correct 11 ms 468 KB Output is correct
17 Correct 3 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 509 ms 548 KB Output is correct
20 Correct 500 ms 544 KB Output is correct
21 Correct 497 ms 520 KB Output is correct
22 Correct 547 ms 528 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 155 ms 31664 KB Output is correct
3 Correct 183 ms 31812 KB Output is correct
4 Correct 34 ms 6096 KB Output is correct
5 Correct 167 ms 29088 KB Output is correct
6 Correct 167 ms 29104 KB Output is correct
7 Correct 37 ms 6100 KB Output is correct
8 Correct 39 ms 6096 KB Output is correct
9 Correct 33 ms 6088 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 419 ms 61288 KB Output is correct
3 Correct 432 ms 61344 KB Output is correct
4 Correct 411 ms 61344 KB Output is correct
5 Correct 426 ms 61372 KB Output is correct
6 Correct 354 ms 61352 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1127 ms 47904 KB Output is correct
2 Correct 1073 ms 47864 KB Output is correct
3 Correct 483 ms 47340 KB Output is correct
4 Correct 437 ms 47268 KB Output is correct
5 Correct 756 ms 44208 KB Output is correct
6 Correct 1190 ms 43936 KB Output is correct
7 Correct 1142 ms 42756 KB Output is correct
8 Correct 836 ms 42408 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
13 Correct 504 ms 516 KB Output is correct
14 Correct 488 ms 552 KB Output is correct
15 Correct 12 ms 468 KB Output is correct
16 Correct 11 ms 468 KB Output is correct
17 Correct 3 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 509 ms 548 KB Output is correct
20 Correct 500 ms 544 KB Output is correct
21 Correct 497 ms 520 KB Output is correct
22 Correct 547 ms 528 KB Output is correct
23 Correct 416 ms 8112 KB Output is correct
24 Correct 297 ms 8200 KB Output is correct
25 Correct 404 ms 8124 KB Output is correct
26 Correct 888 ms 7192 KB Output is correct
27 Correct 804 ms 7192 KB Output is correct
28 Correct 971 ms 7192 KB Output is correct
29 Correct 1313 ms 6936 KB Output is correct
30 Correct 1279 ms 6976 KB Output is correct
31 Correct 8 ms 1236 KB Output is correct
32 Correct 20 ms 7784 KB Output is correct
33 Correct 768 ms 8000 KB Output is correct
34 Incorrect 1405 ms 8040 KB Output isn't correct
35 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
13 Correct 504 ms 516 KB Output is correct
14 Correct 488 ms 552 KB Output is correct
15 Correct 12 ms 468 KB Output is correct
16 Correct 11 ms 468 KB Output is correct
17 Correct 3 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 509 ms 548 KB Output is correct
20 Correct 500 ms 544 KB Output is correct
21 Correct 497 ms 520 KB Output is correct
22 Correct 547 ms 528 KB Output is correct
23 Correct 155 ms 31664 KB Output is correct
24 Correct 183 ms 31812 KB Output is correct
25 Correct 34 ms 6096 KB Output is correct
26 Correct 167 ms 29088 KB Output is correct
27 Correct 167 ms 29104 KB Output is correct
28 Correct 37 ms 6100 KB Output is correct
29 Correct 39 ms 6096 KB Output is correct
30 Correct 33 ms 6088 KB Output is correct
31 Correct 419 ms 61288 KB Output is correct
32 Correct 432 ms 61344 KB Output is correct
33 Correct 411 ms 61344 KB Output is correct
34 Correct 426 ms 61372 KB Output is correct
35 Correct 354 ms 61352 KB Output is correct
36 Correct 1127 ms 47904 KB Output is correct
37 Correct 1073 ms 47864 KB Output is correct
38 Correct 483 ms 47340 KB Output is correct
39 Correct 437 ms 47268 KB Output is correct
40 Correct 756 ms 44208 KB Output is correct
41 Correct 1190 ms 43936 KB Output is correct
42 Correct 1142 ms 42756 KB Output is correct
43 Correct 836 ms 42408 KB Output is correct
44 Correct 416 ms 8112 KB Output is correct
45 Correct 297 ms 8200 KB Output is correct
46 Correct 404 ms 8124 KB Output is correct
47 Correct 888 ms 7192 KB Output is correct
48 Correct 804 ms 7192 KB Output is correct
49 Correct 971 ms 7192 KB Output is correct
50 Correct 1313 ms 6936 KB Output is correct
51 Correct 1279 ms 6976 KB Output is correct
52 Correct 8 ms 1236 KB Output is correct
53 Correct 20 ms 7784 KB Output is correct
54 Correct 768 ms 8000 KB Output is correct
55 Incorrect 1405 ms 8040 KB Output isn't correct
56 Halted 0 ms 0 KB -