이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#include <bits/stdc++.h>
using namespace std;
template <typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
struct edge {
int from, to, weight, cost, id;
edge() {}
edge(int _from, int _to, int _weight, int _cost, int _id) : from(_from), to(_to), weight(_weight), cost(_cost), id(_id) {}
};
struct node {
int distance, parent;
node() {
distance = INT_MAX;
parent = -1;
}
node(int _distance, int _parent) : distance(_distance), parent(_parent) {}
};
struct result {
int edge;
vector<int> distances;
};
vector<node> dijkstra(vector<vector<edge>> graph, int start) {
int n = (int)graph.size();
vector<node> answer(n);
min_heap<pair<int, int>> q;
q.emplace(0, start);
answer[start].distance = 0;
while (!q.empty()) {
auto [d, u] = q.top();
q.pop();
if (answer[u].distance > d) {
continue;
}
for (auto [from, to, weight, cost, id] : graph[u]) {
if (answer[from].distance + weight < answer[to].distance) {
answer[to] = node(answer[from].distance + weight, id);
q.emplace(answer[to].distance, to);
}
}
}
return answer;
}
vector<vector<edge>> transpose(vector<vector<edge>> graph) {
int n = (int)graph.size();
vector<vector<edge>> new_graph(n);
for (int u = 0; u < n; u++) {
for (auto [from, to, weight, cost, id] : graph[u]) {
new_graph[to].emplace_back(to, from, weight, cost, id);
}
}
return new_graph;
}
vector<vector<int>> find_shortest_paths_without_each_edge(vector<vector<edge>> graph, int start) {
int n = (int)graph.size();
int m = 0;
for (int u = 0; u < n; u++) {
for (auto [from, to, weight, cost, id] : graph[u]) {
m = max(m, 1 + id);
}
}
vector<node> result = dijkstra(graph, start);
vector<int> dist(n);
for (int i = 0; i < n; i++) {
dist[i] = result[i].distance;
}
vector<vector<int>> answer(m);
vector<int> special;
for (auto [distance, parent] : result) {
if (parent != -1) {
special.push_back(parent);
vector<vector<edge>> new_graph = graph;
for (int u = 0; u < n; u++) {
for (int i = 0; i < (int)new_graph[u].size(); i++) {
auto [from, to, weight, cost, id] = new_graph[u][i];
if (id == parent) {
new_graph[u].erase(new_graph[u].begin() + i);
break;
}
}
}
vector<node> new_result = dijkstra(new_graph, start);
answer[parent] = vector<int>(n);
for (int i = 0; i < n; i++) {
answer[parent][i] = new_result[i].distance;
}
}
}
answer.push_back(dist);
return answer;
}
void solve() {
int n, m;
cin >> n >> m;
vector<vector<edge>> graph(n);
for (int i = 0; i < m; i++) {
int from, to, weight, cost;
cin >> from >> to >> weight >> cost;
from--, to--;
graph[from].emplace_back(from, to, weight, cost, i);
}
vector<vector<edge>> rev_graph = transpose(graph);
vector<vector<int>> result_a = find_shortest_paths_without_each_edge(graph, 0);
vector<vector<int>> result_b = find_shortest_paths_without_each_edge(graph, n - 1);
vector<vector<int>> rev_result_a = find_shortest_paths_without_each_edge(rev_graph, 0);
vector<vector<int>> rev_result_b = find_shortest_paths_without_each_edge(rev_graph, n - 1);
auto get = [](vector<vector<int>>& x, int i, int j) {
if (x[i].empty()) {
return x.back()[j];
} else {
return x[i][j];
}
};
int ans = INT_MAX;
if (result_a.back()[n - 1] != INT_MAX && result_b.back()[0] != INT_MAX) {
ans = result_a.back()[n - 1] + result_b.back()[0];
}
for (int u = 0; u < n; u++) {
for (auto [from, to, weight, cost, id] : graph[u]) {
int AB = INT_MAX, BA = INT_MAX;
AB = min(AB, get(result_a, id, n - 1));
if (get(result_a, id, to) != INT_MAX && get(rev_result_b, id, from) != INT_MAX) {
AB = min(AB, get(result_a, id, to) + get(rev_result_b, id, from) + weight);
}
BA = min(BA, get(result_b, id, 0));
if (get(result_b, id, to) != INT_MAX && get(rev_result_a, id, from) != INT_MAX) {
BA = min(BA, get(result_b, id, to) + get(rev_result_a, id, from) + weight);
}
if (AB == INT_MAX || BA == INT_MAX) {
continue;
}
ans = min(ans, AB + BA + cost);
}
}
cout << (ans == INT_MAX ? -1 : ans) << "\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |