#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
#include <bits/stdc++.h>
using namespace std;
template <typename T>
using min_heap = priority_queue<T, vector<T>, greater<T>>;
struct edge {
int from, to, weight, cost, id;
edge() {}
edge(int _from, int _to, int _weight, int _cost, int _id) : from(_from), to(_to), weight(_weight), cost(_cost), id(_id) {}
};
struct node {
int distance, parent;
node() {
distance = INT_MAX;
parent = -1;
}
node(int _distance, int _parent) : distance(_distance), parent(_parent) {}
};
struct result {
int edge;
vector<int> distances;
};
vector<node> dijkstra(vector<vector<edge>> graph, int start) {
int n = (int)graph.size();
vector<node> answer(n);
min_heap<pair<int, int>> q;
q.emplace(0, start);
answer[start].distance = 0;
while (!q.empty()) {
auto [d, u] = q.top();
q.pop();
if (answer[u].distance > d) {
continue;
}
for (auto [from, to, weight, cost, id] : graph[u]) {
if (answer[from].distance + weight < answer[to].distance) {
answer[to] = node(answer[from].distance + weight, id);
q.emplace(answer[to].distance, to);
}
}
}
return answer;
}
vector<vector<edge>> transpose(vector<vector<edge>> graph) {
int n = (int)graph.size();
vector<vector<edge>> new_graph(n);
for (int u = 0; u < n; u++) {
for (auto [from, to, weight, cost, id] : graph[u]) {
new_graph[to].emplace_back(to, from, weight, cost, id);
}
}
return new_graph;
}
vector<vector<int>> find_shortest_paths_without_each_edge(vector<vector<edge>> graph, int start) {
int n = (int)graph.size();
int m = 0;
for (int u = 0; u < n; u++) {
for (auto [from, to, weight, cost, id] : graph[u]) {
m = max(m, 1 + id);
}
}
vector<node> result = dijkstra(graph, start);
vector<int> dist(n);
for (int i = 0; i < n; i++) {
dist[i] = result[i].distance;
}
vector<vector<int>> answer(m, dist);
for (auto [distance, parent] : result) {
if (parent != -1) {
vector<vector<edge>> new_graph = graph;
for (int u = 0; u < n; u++) {
for (int i = 0; i < (int)new_graph[u].size(); i++) {
auto [from, to, weight, cost, id] = new_graph[u][i];
if (id == parent) {
new_graph[u].erase(new_graph[u].begin() + i);
break;
}
}
}
vector<node> new_result = dijkstra(new_graph, start);
for (int i = 0; i < n; i++) {
answer[parent][i] = new_result[i].distance;
}
}
}
return answer;
}
void solve() {
int n, m;
cin >> n >> m;
vector<vector<edge>> graph(n);
for (int i = 0; i < m; i++) {
int from, to, weight, cost;
cin >> from >> to >> weight >> cost;
from--, to--;
graph[from].emplace_back(from, to, weight, cost, i);
}
vector<vector<edge>> rev_graph = transpose(graph);
vector<vector<int>> result_a = find_shortest_paths_without_each_edge(graph, 0);
vector<vector<int>> result_b = find_shortest_paths_without_each_edge(graph, n - 1);
vector<vector<int>> rev_result_a = find_shortest_paths_without_each_edge(rev_graph, 0);
vector<vector<int>> rev_result_b = find_shortest_paths_without_each_edge(rev_graph, n - 1);
int ans = INT_MAX;
int ab = dijkstra(graph, 0)[n - 1].distance;
int ba = dijkstra(graph, n - 1)[0].distance;
if (ab != INT_MAX && ba != INT_MAX) {
ans = min(ans, ab + ba);
}
for (int u = 0; u < n; u++) {
for (auto [from, to, weight, cost, id] : graph[u]) {
int AB = INT_MAX, BA = INT_MAX;
AB = min(AB, result_a[id][n - 1]);
if (result_a[id][to] != INT_MAX && rev_result_b[id][from] != INT_MAX) {
AB = min(AB, result_a[id][to] + rev_result_b[id][from] + weight);
}
BA = min(BA, result_b[id][0]);
if (result_b[id][to] != INT_MAX && rev_result_a[id][from] != INT_MAX) {
BA = min(BA, result_b[id][to] + rev_result_a[id][from] + weight);
}
if (AB == INT_MAX || BA == INT_MAX) {
continue;
}
ans = min(ans, AB + BA + cost);
}
}
cout << (ans == INT_MAX ? -1 : ans) << "\n";
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
solve();
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
41 ms |
3704 KB |
Output is correct |
2 |
Correct |
3 ms |
1108 KB |
Output is correct |
3 |
Correct |
42 ms |
3700 KB |
Output is correct |
4 |
Correct |
45 ms |
3712 KB |
Output is correct |
5 |
Correct |
4 ms |
1236 KB |
Output is correct |
6 |
Correct |
5 ms |
1108 KB |
Output is correct |
7 |
Correct |
0 ms |
212 KB |
Output is correct |
8 |
Correct |
0 ms |
212 KB |
Output is correct |
9 |
Correct |
1 ms |
596 KB |
Output is correct |
10 |
Correct |
53 ms |
3756 KB |
Output is correct |
11 |
Correct |
54 ms |
3700 KB |
Output is correct |
12 |
Correct |
50 ms |
3780 KB |
Output is correct |
13 |
Correct |
17 ms |
3760 KB |
Output is correct |
14 |
Correct |
30 ms |
3712 KB |
Output is correct |
15 |
Correct |
31 ms |
3716 KB |
Output is correct |
16 |
Correct |
29 ms |
3740 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1066 ms |
170652 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
41 ms |
3652 KB |
Output is correct |
2 |
Correct |
8 ms |
1108 KB |
Output is correct |
3 |
Correct |
557 ms |
132940 KB |
Output is correct |
4 |
Correct |
6 ms |
1108 KB |
Output is correct |
5 |
Correct |
788 ms |
170556 KB |
Output is correct |
6 |
Correct |
0 ms |
212 KB |
Output is correct |
7 |
Correct |
0 ms |
212 KB |
Output is correct |
8 |
Correct |
377 ms |
170892 KB |
Output is correct |
9 |
Correct |
375 ms |
170812 KB |
Output is correct |
10 |
Correct |
563 ms |
170536 KB |
Output is correct |
11 |
Correct |
560 ms |
170648 KB |
Output is correct |
12 |
Correct |
596 ms |
170764 KB |
Output is correct |
13 |
Correct |
0 ms |
212 KB |
Output is correct |
14 |
Correct |
0 ms |
212 KB |
Output is correct |
15 |
Correct |
0 ms |
212 KB |
Output is correct |
16 |
Correct |
0 ms |
212 KB |
Output is correct |
17 |
Correct |
1 ms |
212 KB |
Output is correct |
18 |
Correct |
0 ms |
212 KB |
Output is correct |
19 |
Correct |
627 ms |
170908 KB |
Output is correct |
20 |
Correct |
579 ms |
170580 KB |
Output is correct |
21 |
Correct |
548 ms |
170620 KB |
Output is correct |
22 |
Correct |
616 ms |
170552 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
41 ms |
3704 KB |
Output is correct |
2 |
Correct |
3 ms |
1108 KB |
Output is correct |
3 |
Correct |
42 ms |
3700 KB |
Output is correct |
4 |
Correct |
45 ms |
3712 KB |
Output is correct |
5 |
Correct |
4 ms |
1236 KB |
Output is correct |
6 |
Correct |
5 ms |
1108 KB |
Output is correct |
7 |
Correct |
0 ms |
212 KB |
Output is correct |
8 |
Correct |
0 ms |
212 KB |
Output is correct |
9 |
Correct |
1 ms |
596 KB |
Output is correct |
10 |
Correct |
53 ms |
3756 KB |
Output is correct |
11 |
Correct |
54 ms |
3700 KB |
Output is correct |
12 |
Correct |
50 ms |
3780 KB |
Output is correct |
13 |
Correct |
17 ms |
3760 KB |
Output is correct |
14 |
Correct |
30 ms |
3712 KB |
Output is correct |
15 |
Correct |
31 ms |
3716 KB |
Output is correct |
16 |
Correct |
29 ms |
3740 KB |
Output is correct |
17 |
Execution timed out |
1066 ms |
170652 KB |
Time limit exceeded |
18 |
Halted |
0 ms |
0 KB |
- |