Submission #748483

# Submission time Handle Problem Language Result Execution time Memory
748483 2023-05-26T10:53:49 Z GrindMachine Abduction 2 (JOI17_abduction2) C++17
100 / 100
2712 ms 331468 KB
// Om Namah Shivaya

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;

#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl

#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)

template<typename T>
void amin(T &a, T b) {
    a = min(a, b);
}

template<typename T>
void amax(T &a, T b) {
    a = max(a, b);
}

#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif

/*

refs:
edi

*/

const int MOD = 1e9 + 7;
const int N = 5e4 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;

template<typename T>
struct sparse_table {
    /*============================*/

    T merge(T a, T b) {
        return max(a, b);
    }

    /*============================*/

    vector<vector<T>> table;
    vector<int> bin_log;
    int LOG = 0;

    sparse_table() {

    }

    sparse_table(vector<T> &a, int n) {
        while ((1 << LOG) <= n) LOG++;

        table = vector<vector<T>>(n, vector<T>(LOG));
        bin_log = vector<int>(n + 1);

        rep(i, n) table[i][0] = a[i];

        rep1(j, LOG - 1) {
            rep(i, n) {
                int jump = 1 << (j - 1);
                if (i + jump >= n) {
                    break;
                }

                table[i][j] = merge(table[i][j - 1], table[i + jump][j - 1]);
            }
        }

        bin_log[1] = 0;
        for (int i = 2; i <= n; ++i) {
            bin_log[i] = bin_log[i / 2] + 1;
        }
    }

    T query(int l, int r) {
        int len = r - l + 1;
        int k = bin_log[len];

        T val1 = table[l][k];
        T val2 = table[r - (1 << k) + 1][k];

        return merge(val1, val2);
    }
};

ll n,m,q;
vector<ll> a(N), b(N);
map<array<ll,3>, ll> dp;
sparse_table<ll> st1, st2;

ll first_left(sparse_table<ll> &st, ll i, ll v){
    ll l = 0, r = i;
    ll ans = -1;
    
    while(l <= r){
        ll mid = (l + r) >> 1;
        if(st.query(mid,i) > v){
            ans = mid;
            l = mid + 1;
        }
        else{
            r = mid - 1;
        }
    } 

    return ans;
}

ll first_right(sparse_table<ll> &st, ll i, ll v){
    ll l = i, r = sz(st.table)-1;
    ll ans = -1;
    
    while(l <= r){
        ll mid = (l + r) >> 1;
        if(st.query(i,mid) > v){
            ans = mid;
            r = mid - 1;
        }
        else{
            l = mid + 1;
        }
    } 

    return ans;
}

ll go(ll i, ll j, ll d){
    if(i < 1 or i > n or j < 1 or j > m) return -1;
    array<ll,3> key = {i,j,d};
    if(dp.count(key)) return dp[key];

    ll ans = 0;

    if(d <= 1){
        if(b[j] > a[i]){
            amax(ans, 1 + go(i-1,j,2));
            amax(ans, 1 + go(i+1,j,3));
        }
        else{
            // find first pos where dir changes
            // use sparse table to optimize
            if(d == 0){
                ll p = first_left(st2,j,a[i]);
                amax(ans, abs(j-p) + go(i,p,d));
            }
            else{
                ll p = first_right(st2,j,a[i]);
                amax(ans, abs(j-p) + go(i,p,d));
            }
        }
    }
    else{
        if(a[i] > b[j]){
            amax(ans, 1 + go(i,j-1,0));
            amax(ans, 1 + go(i,j+1,1));       
        }
        else{
            if(d == 2){
                ll p = first_left(st1,i,b[j]);
                amax(ans, abs(i-p) + go(p,j,d));
            }
            else{                
                ll p = first_right(st1,i,b[j]);
                amax(ans, abs(i-p) + go(p,j,d));
            }
        }
    }

    return dp[key] = ans;
}

void solve(int test_case)
{
    cin >> n >> m >> q;
    rep1(i,n) cin >> a[i];
    rep1(i,m) cin >> b[i];

    a[0] = inf2, a[n+1] = inf2;
    b[0] = inf2, b[m+1] = inf2;

    st1 = sparse_table<ll>(a,n+2);
    st2 = sparse_table<ll>(b,m+2);

    while(q--){
        ll i,j; cin >> i >> j;
        ll ans = 1 + max({go(i,j-1,0), go(i,j+1,1), go(i-1,j,2), go(i+1,j,3)});
        cout << ans << endl;
    }
}

int main()
{
    fastio;

    int t = 1;
    // cin >> t;

    rep1(i, t) {
        solve(i);
    }

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1108 KB Output is correct
2 Correct 1 ms 1108 KB Output is correct
3 Correct 1 ms 1108 KB Output is correct
4 Correct 1 ms 1108 KB Output is correct
5 Correct 1 ms 1108 KB Output is correct
6 Correct 1 ms 1108 KB Output is correct
7 Correct 1 ms 1108 KB Output is correct
8 Correct 1 ms 1108 KB Output is correct
9 Correct 1 ms 1108 KB Output is correct
10 Correct 1 ms 1108 KB Output is correct
11 Correct 1 ms 1108 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1108 KB Output is correct
2 Correct 1 ms 1108 KB Output is correct
3 Correct 1 ms 1108 KB Output is correct
4 Correct 1 ms 1108 KB Output is correct
5 Correct 1 ms 1108 KB Output is correct
6 Correct 1 ms 1108 KB Output is correct
7 Correct 1 ms 1108 KB Output is correct
8 Correct 1 ms 1108 KB Output is correct
9 Correct 1 ms 1108 KB Output is correct
10 Correct 1 ms 1108 KB Output is correct
11 Correct 1 ms 1108 KB Output is correct
12 Correct 1 ms 1492 KB Output is correct
13 Correct 3 ms 1568 KB Output is correct
14 Correct 2 ms 1492 KB Output is correct
15 Correct 2 ms 1492 KB Output is correct
16 Correct 2 ms 1492 KB Output is correct
17 Correct 1 ms 1492 KB Output is correct
18 Correct 2 ms 1620 KB Output is correct
19 Correct 4 ms 2132 KB Output is correct
20 Correct 6 ms 2388 KB Output is correct
21 Correct 7 ms 2132 KB Output is correct
22 Correct 6 ms 2644 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1108 KB Output is correct
2 Correct 1 ms 1108 KB Output is correct
3 Correct 1 ms 1108 KB Output is correct
4 Correct 1 ms 1108 KB Output is correct
5 Correct 1 ms 1108 KB Output is correct
6 Correct 1 ms 1108 KB Output is correct
7 Correct 1 ms 1108 KB Output is correct
8 Correct 1 ms 1108 KB Output is correct
9 Correct 1 ms 1108 KB Output is correct
10 Correct 1 ms 1108 KB Output is correct
11 Correct 1 ms 1108 KB Output is correct
12 Correct 1 ms 1492 KB Output is correct
13 Correct 3 ms 1568 KB Output is correct
14 Correct 2 ms 1492 KB Output is correct
15 Correct 2 ms 1492 KB Output is correct
16 Correct 2 ms 1492 KB Output is correct
17 Correct 1 ms 1492 KB Output is correct
18 Correct 2 ms 1620 KB Output is correct
19 Correct 4 ms 2132 KB Output is correct
20 Correct 6 ms 2388 KB Output is correct
21 Correct 7 ms 2132 KB Output is correct
22 Correct 6 ms 2644 KB Output is correct
23 Correct 39 ms 18484 KB Output is correct
24 Correct 36 ms 19024 KB Output is correct
25 Correct 33 ms 18836 KB Output is correct
26 Correct 33 ms 18900 KB Output is correct
27 Correct 37 ms 18816 KB Output is correct
28 Correct 84 ms 30592 KB Output is correct
29 Correct 38 ms 20552 KB Output is correct
30 Correct 149 ms 35432 KB Output is correct
31 Correct 216 ms 40336 KB Output is correct
32 Correct 36 ms 19548 KB Output is correct
33 Correct 68 ms 23112 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 2132 KB Output is correct
2 Correct 5 ms 2132 KB Output is correct
3 Correct 6 ms 2132 KB Output is correct
4 Correct 8 ms 2132 KB Output is correct
5 Correct 6 ms 2132 KB Output is correct
6 Correct 3 ms 2132 KB Output is correct
7 Correct 3 ms 2132 KB Output is correct
8 Correct 9 ms 2752 KB Output is correct
9 Correct 12 ms 2868 KB Output is correct
10 Correct 11 ms 2696 KB Output is correct
11 Correct 12 ms 2772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 1108 KB Output is correct
2 Correct 1 ms 1108 KB Output is correct
3 Correct 1 ms 1108 KB Output is correct
4 Correct 1 ms 1108 KB Output is correct
5 Correct 1 ms 1108 KB Output is correct
6 Correct 1 ms 1108 KB Output is correct
7 Correct 1 ms 1108 KB Output is correct
8 Correct 1 ms 1108 KB Output is correct
9 Correct 1 ms 1108 KB Output is correct
10 Correct 1 ms 1108 KB Output is correct
11 Correct 1 ms 1108 KB Output is correct
12 Correct 1 ms 1492 KB Output is correct
13 Correct 3 ms 1568 KB Output is correct
14 Correct 2 ms 1492 KB Output is correct
15 Correct 2 ms 1492 KB Output is correct
16 Correct 2 ms 1492 KB Output is correct
17 Correct 1 ms 1492 KB Output is correct
18 Correct 2 ms 1620 KB Output is correct
19 Correct 4 ms 2132 KB Output is correct
20 Correct 6 ms 2388 KB Output is correct
21 Correct 7 ms 2132 KB Output is correct
22 Correct 6 ms 2644 KB Output is correct
23 Correct 39 ms 18484 KB Output is correct
24 Correct 36 ms 19024 KB Output is correct
25 Correct 33 ms 18836 KB Output is correct
26 Correct 33 ms 18900 KB Output is correct
27 Correct 37 ms 18816 KB Output is correct
28 Correct 84 ms 30592 KB Output is correct
29 Correct 38 ms 20552 KB Output is correct
30 Correct 149 ms 35432 KB Output is correct
31 Correct 216 ms 40336 KB Output is correct
32 Correct 36 ms 19548 KB Output is correct
33 Correct 68 ms 23112 KB Output is correct
34 Correct 6 ms 2132 KB Output is correct
35 Correct 5 ms 2132 KB Output is correct
36 Correct 6 ms 2132 KB Output is correct
37 Correct 8 ms 2132 KB Output is correct
38 Correct 6 ms 2132 KB Output is correct
39 Correct 3 ms 2132 KB Output is correct
40 Correct 3 ms 2132 KB Output is correct
41 Correct 9 ms 2752 KB Output is correct
42 Correct 12 ms 2868 KB Output is correct
43 Correct 11 ms 2696 KB Output is correct
44 Correct 12 ms 2772 KB Output is correct
45 Correct 45 ms 19860 KB Output is correct
46 Correct 41 ms 19784 KB Output is correct
47 Correct 44 ms 19936 KB Output is correct
48 Correct 43 ms 19916 KB Output is correct
49 Correct 42 ms 19828 KB Output is correct
50 Correct 86 ms 30732 KB Output is correct
51 Correct 85 ms 31936 KB Output is correct
52 Correct 248 ms 47904 KB Output is correct
53 Correct 228 ms 46648 KB Output is correct
54 Correct 221 ms 45044 KB Output is correct
55 Correct 302 ms 52396 KB Output is correct
56 Correct 2712 ms 331468 KB Output is correct
57 Correct 621 ms 99540 KB Output is correct
58 Correct 609 ms 95436 KB Output is correct
59 Correct 622 ms 95016 KB Output is correct