#include<bits/stdc++.h>
using namespace std;
const int MAXN = 200'005;
const long long INF = 1'000'000'000'015;
template <class Select>
vector<int> smawk(const int row_size, const int col_size,
const Select &select){
using vec_zu = vector<int>;
const function<vec_zu(const vec_zu&, const vec_zu&)> solve=
[&](const vec_zu &row, const vec_zu &col) -> vec_zu{
const int n = row.size();
if (n == 0) return {};
vec_zu c2;
for(const int i : col){
while(!c2.empty()&&select(row[c2.size()-1],c2.back(),i))
c2.pop_back();
if (c2.size() < n) c2.push_back(i);
}
vec_zu r2;
for(int i = 1; i < n; i += 2) r2.push_back(row[i]);
const vec_zu a2 = solve(r2, c2);
vec_zu ans(n);
for(int i = 0; i != a2.size(); i += 1) ans[i*2+1]=a2[i];
int j = 0;
for(int i = 0; i < n; i += 2){
ans[i] = c2[j];
const int end = i + 1 == n ? c2.back() : ans[i + 1];
while (c2[j] != end){
j += 1;
if(select(row[i], ans[i], c2[j])) ans[i] = c2[j];
}
}
return ans;
};
vec_zu row(row_size);iota(row.begin(), row.end(), 0);
vec_zu col(col_size);iota(col.begin(), col.end(), 0);
return solve(row, col);
}
template <class T>
vector<T> concave_max_plus_convolution(const vector<T> &a,
const vector<T> &b){
const int n = a.size(); const int m = b.size();
const auto get = [&](const int i, const int j){
return a[j] + b[i - j];
};
const auto select=[&](const int i,const int j,const int k){
if (i < k) return false;
if (i - j >= m) return true;
return get(i, j) <= get(i, k);
};
const vector<int> amax = smawk(n + m - 1, n, select);
vector<T> c(n + m - 1);
for (int i = 0; i != n + m - 1; i += 1)
c[i] = get(i, amax[i]);
return c;
} //$\mathit{ans}_i=\max_{j+k=i}(A_j+B_k)$
int n,r;
long long a[MAXN];
struct dp{
vector<long long> mat[2][2];
dp(){}
dp(int n){
mat[0][0]=vector<long long>(n+1,LLONG_MIN);
mat[0][1]=vector<long long>(n+1,LLONG_MIN);
mat[1][0]=vector<long long>(n+1,LLONG_MIN);
mat[1][1]=vector<long long>(n+1,LLONG_MIN);
}
dp(vector<long long> a,vector<long long>b,vector<long long>c,vector<long long>d){
mat[0][0]=a;
mat[0][1]=b;
mat[1][0]=c;
mat[1][1]=d;
}
};
dp f(int l,int r){
if(l+1==r){
return dp({0,-INF},{-INF,-INF},{-INF,-INF},{-INF,a[l]});
}
if(l+2==r){
return dp({0,-INF,-2ll*INF-1ll},{-INF,a[l+1],-INF},{-INF,a[l],-INF},{-3ll*INF-3ll,-2*INF-1ll,-INF});
}
dp res(r-l),le,ri;
if((r-l)%2 == 1){
le = f(l,(l+r)/2+1);
ri = f((l+r)/2,r);
}else{
le = f(l,(l+r)/2);
ri = f((l+r)/2-1,r);
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
for(int k=0;k<2;k++){
auto tmp = concave_max_plus_convolution(le.mat[i][k],ri.mat[k][j]);
for(int ll=0;ll<=r-l;ll++){
res.mat[i][j][ll] = max(res.mat[i][j][ll],tmp[ll+k]-k*a[(r-l)%2 == 1 ? (l+r)/2 : (l+r)/2-1]);
}
}
}
}
return res;
}
void solve(){
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i];
}
auto tmp = f(0,n);
for(int i=1;i<=(n+1)/2;i++)
cout<<max({tmp.mat[0][0][i],tmp.mat[0][1][i],tmp.mat[1][0][i],tmp.mat[1][1][i]})<<"\n";
}
signed main(){
//ios::sync_with_stdio(false);
//cin.tie(0);
int t=1;
//cin>>t;
for(int i=1;i<=t;i++)solve();
return 0;
}
Compilation message
candies.cpp: In lambda function:
candies.cpp:26:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
26 | for(int i = 0; i != a2.size(); i += 1) ans[i*2+1]=a2[i];
| ~~^~~~~~~~~~~~
candies.cpp: In instantiation of 'std::vector<int> smawk(int, int, const Select&) [with Select = concave_max_plus_convolution<long long int>::<lambda(int, int, int)>]':
candies.cpp:54:33: required from 'std::vector<_Tp> concave_max_plus_convolution(const std::vector<_Tp>&, const std::vector<_Tp>&) [with T = long long int]'
candies.cpp:106:74: required from here
candies.cpp:20:21: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'const int' [-Wsign-compare]
20 | if (c2.size() < n) c2.push_back(i);
| ~~~~~~~~~~^~~
candies.cpp:26:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
26 | for(int i = 0; i != a2.size(); i += 1) ans[i*2+1]=a2[i];
| ~~^~~~~~~~~~~~
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
19 ms |
468 KB |
Output is correct |
2 |
Correct |
19 ms |
468 KB |
Output is correct |
3 |
Correct |
20 ms |
484 KB |
Output is correct |
4 |
Correct |
19 ms |
468 KB |
Output is correct |
5 |
Correct |
18 ms |
468 KB |
Output is correct |
6 |
Correct |
26 ms |
512 KB |
Output is correct |
7 |
Correct |
18 ms |
448 KB |
Output is correct |
8 |
Correct |
19 ms |
472 KB |
Output is correct |
9 |
Correct |
17 ms |
468 KB |
Output is correct |
10 |
Correct |
18 ms |
532 KB |
Output is correct |
11 |
Correct |
20 ms |
468 KB |
Output is correct |
12 |
Correct |
20 ms |
552 KB |
Output is correct |
13 |
Correct |
19 ms |
480 KB |
Output is correct |
14 |
Correct |
23 ms |
540 KB |
Output is correct |
15 |
Correct |
21 ms |
564 KB |
Output is correct |
16 |
Correct |
19 ms |
524 KB |
Output is correct |
17 |
Correct |
20 ms |
516 KB |
Output is correct |
18 |
Correct |
21 ms |
468 KB |
Output is correct |
19 |
Correct |
19 ms |
468 KB |
Output is correct |
20 |
Correct |
19 ms |
468 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
19 ms |
468 KB |
Output is correct |
2 |
Correct |
19 ms |
468 KB |
Output is correct |
3 |
Correct |
20 ms |
484 KB |
Output is correct |
4 |
Correct |
19 ms |
468 KB |
Output is correct |
5 |
Correct |
18 ms |
468 KB |
Output is correct |
6 |
Correct |
26 ms |
512 KB |
Output is correct |
7 |
Correct |
18 ms |
448 KB |
Output is correct |
8 |
Correct |
19 ms |
472 KB |
Output is correct |
9 |
Correct |
17 ms |
468 KB |
Output is correct |
10 |
Correct |
18 ms |
532 KB |
Output is correct |
11 |
Correct |
20 ms |
468 KB |
Output is correct |
12 |
Correct |
20 ms |
552 KB |
Output is correct |
13 |
Correct |
19 ms |
480 KB |
Output is correct |
14 |
Correct |
23 ms |
540 KB |
Output is correct |
15 |
Correct |
21 ms |
564 KB |
Output is correct |
16 |
Correct |
19 ms |
524 KB |
Output is correct |
17 |
Correct |
20 ms |
516 KB |
Output is correct |
18 |
Correct |
21 ms |
468 KB |
Output is correct |
19 |
Correct |
19 ms |
468 KB |
Output is correct |
20 |
Correct |
19 ms |
468 KB |
Output is correct |
21 |
Correct |
2271 ms |
22744 KB |
Output is correct |
22 |
Correct |
2790 ms |
20792 KB |
Output is correct |
23 |
Correct |
2416 ms |
21004 KB |
Output is correct |
24 |
Correct |
2168 ms |
22692 KB |
Output is correct |
25 |
Correct |
2093 ms |
21404 KB |
Output is correct |
26 |
Correct |
2104 ms |
20888 KB |
Output is correct |
27 |
Correct |
2203 ms |
20872 KB |
Output is correct |
28 |
Correct |
2359 ms |
21000 KB |
Output is correct |
29 |
Correct |
2301 ms |
22824 KB |
Output is correct |
30 |
Correct |
2348 ms |
21212 KB |
Output is correct |
31 |
Correct |
2293 ms |
22836 KB |
Output is correct |
32 |
Correct |
2407 ms |
22784 KB |
Output is correct |
33 |
Correct |
2326 ms |
22064 KB |
Output is correct |
34 |
Correct |
2117 ms |
22468 KB |
Output is correct |
35 |
Correct |
2153 ms |
20984 KB |
Output is correct |
36 |
Correct |
2220 ms |
21080 KB |
Output is correct |
37 |
Correct |
2166 ms |
21484 KB |
Output is correct |
38 |
Correct |
2186 ms |
21288 KB |
Output is correct |
39 |
Correct |
1995 ms |
21632 KB |
Output is correct |
40 |
Correct |
1986 ms |
22824 KB |
Output is correct |
41 |
Correct |
1973 ms |
20916 KB |
Output is correct |
42 |
Correct |
2143 ms |
20988 KB |
Output is correct |
43 |
Correct |
2103 ms |
21644 KB |
Output is correct |
44 |
Correct |
2119 ms |
21028 KB |
Output is correct |
45 |
Correct |
2127 ms |
22780 KB |
Output is correct |
46 |
Correct |
2101 ms |
21208 KB |
Output is correct |
47 |
Correct |
2111 ms |
21112 KB |
Output is correct |
48 |
Correct |
2133 ms |
21104 KB |
Output is correct |
49 |
Correct |
2129 ms |
22556 KB |
Output is correct |
50 |
Correct |
2148 ms |
20920 KB |
Output is correct |