Submission #743144

# Submission time Handle Problem Language Result Execution time Memory
743144 2023-05-17T08:20:01 Z maomao90 Nicelines (RMI20_nicelines) C++17
82.0192 / 100
125 ms 1888 KB
#include <bits/stdc++.h>
#include "nice_lines.h"
using namespace std;

#define REP(i, j, k) for (int i = j; i < k; i++)
#define RREP(i, j, k) for (int i = j; i >= k; i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<ll> vll;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if(0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 100;
const int MAXA = 10000;
const ld EPS = 1e-12;
const ld STEP = 1e-5;

struct Point {
    long double x, y;
    Point();
    Point(long double x, long double y);
    Point operator-() const;
    Point& operator+=(const Point &p);
    Point& operator-=(const Point &p);
    Point operator+(const Point &p) const;
    Point operator-(const Point &p) const;
    Point operator* (long double k) const;
    long double dot(const Point &p) const;
};
struct Line {
    Point off, dir;
    Line(int a, int b);
    long double dist(Point p);
};
Point::Point(): x(0), y(0) {}
Point::Point(long double x, long double y): x(x), y(y) {}
Point Point::operator-() const{
    return Point(-x, -y);
}
Point& Point::operator+=(const Point &p) {
    x += p.x;
    y += p.y;
    return *this;
}
Point& Point::operator-=(const Point &p) {
    return *this += (-p);
}
Point Point::operator+(const Point &p) const {
    Point res = *this;
    return res += p;
}
Point Point::operator-(const Point &p) const {
    Point res = *this;
    return res -= p;
}
long double Point::dot(const Point &p) const {
    return x * p.x + y * p.y;
}
Point Point::operator* (long double k) const {
    return Point(x * k, y * k);
}

Line::Line(int a, int b) {
    off = Point(0, b);
    dir = Point(1, a);
}
long double Line::dist(Point p) {
    p -= off;
    Point delta = dir * (p.dot(dir) / dir.dot(dir)) - p;
    return sqrt(delta.dot(delta));
}

ld mp0[MAXA * 10 + 5];
ld query0(int x) {
    if (mp0[x + MAXA * 2] != LINF) {
        return mp0[x + MAXA * 2];
    }
    return mp0[x + MAXA * 2] = query(0, x);
}

int fib[MAXA];
void solve(int subtask_id, int n) {
    REP (i, 0, MAXA * 10 + 5) {
        mp0[i] = LINF;
    }
    vi va, vb;
    vector<Line> vl;
    int blo = -MAXA, bhi = MAXA;
    if (subtask_id == 4) {
        blo = -500, bhi = 500;
    }
    fib[0] = 1; fib[1] = 2;
    int gd = -1;
    REP (i, 2, MAXA) {
        fib[i] = fib[i - 1] + fib[i - 2];
        if (blo + fib[i] >= bhi) {
            bhi = blo + fib[i];
            gd = i;
            break;
        }
    }
    REP (i, 0, n) {
        int lo = blo, hi = bhi;
        RREP (k, gd, 2) {
        //while (hi - lo >= 3) {
            //int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            int mid1 = lo + fib[k - 2], mid2 = lo + fib[k - 1];
            ld q1 = query0(mid1), q2 = query0(mid2);
            cerr << mid1 << ": " << q1 << '\n';
            cerr << ' ' << mid2 << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(0, mid1));
                q2 -= l.dist(Point(0, mid2));
            }
            //cerr << mid1 << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ": " << q2 << '\n';
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int b = INF;
        ld mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query0(i);
            for (Line l : vl) {
                q -= l.dist(Point(0, i));
            }
            if (mnto(mn, q)) {
                b = i;
            }
        }
        //assert(b != INF);
        lo = -MAXA, hi = MAXA;
        if (subtask_id == 4) {
            lo = -500, hi = 500;
        }
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query(STEP, mid1 * STEP + b), q2 = query(STEP, mid2 * STEP + b);
            //cerr << mid1 << ' ' << mid1 * STEP + b << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ' ' << mid2 * STEP + b << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(STEP, mid1 * STEP + b));
                q2 -= l.dist(Point(STEP, mid2 * STEP + b));
            }
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int a = INF;
        mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query(STEP, i * STEP + b);
            for (Line l : vl) {
                q -= l.dist(Point(STEP, i * STEP + b));
            }
            if (mnto(mn, q)) {
                a = i;
            }
        }
        //assert(a != INF);
        va.pb(a); vb.pb(b);
        vl.pb(Line(a, b));
    }
    the_lines_are(va, vb);
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 1872 KB Output is correct
2 Correct 3 ms 1872 KB Output is correct
3 Correct 3 ms 1836 KB Output is correct
4 Correct 3 ms 1872 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 1872 KB Output is correct
2 Correct 4 ms 1872 KB Output is correct
3 Correct 4 ms 1872 KB Output is correct
4 Correct 4 ms 1872 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 1872 KB Output is correct
2 Correct 4 ms 1872 KB Output is correct
3 Correct 5 ms 1872 KB Output is correct
4 Correct 5 ms 1872 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 53 ms 1888 KB Output is partially correct
2 Partially correct 86 ms 1872 KB Output is partially correct
3 Partially correct 81 ms 1880 KB Output is partially correct
4 Partially correct 75 ms 1880 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 38 ms 1872 KB Output is partially correct
2 Partially correct 35 ms 1872 KB Output is partially correct
3 Partially correct 38 ms 1872 KB Output is partially correct
4 Partially correct 31 ms 1872 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 53 ms 1888 KB Output is partially correct
2 Partially correct 86 ms 1872 KB Output is partially correct
3 Partially correct 81 ms 1880 KB Output is partially correct
4 Partially correct 75 ms 1880 KB Output is partially correct
5 Partially correct 38 ms 1872 KB Output is partially correct
6 Partially correct 35 ms 1872 KB Output is partially correct
7 Partially correct 38 ms 1872 KB Output is partially correct
8 Partially correct 31 ms 1872 KB Output is partially correct
9 Partially correct 125 ms 1872 KB Output is partially correct
10 Partially correct 88 ms 1888 KB Output is partially correct
11 Partially correct 83 ms 1880 KB Output is partially correct
12 Partially correct 106 ms 1880 KB Output is partially correct