답안 #743035

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
743035 2023-05-17T07:33:56 Z maomao90 Nicelines (RMI20_nicelines) C++17
78.7226 / 100
128 ms 468 KB
#include <bits/stdc++.h>
#include "nice_lines.h"
using namespace std;

#define REP(i, j, k) for (int i = j; i < k; i++)
#define RREP(i, j, k) for (int i = j; i >= k; i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<ll> vll;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if(0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 100;
const int MAXA = 10000;
const ld EPS = 1e-12;
const ld STEP = 1e-5;

struct Point {
    long double x, y;
    Point();
    Point(long double x, long double y);
    Point operator-() const;
    Point& operator+=(const Point &p);
    Point& operator-=(const Point &p);
    Point operator+(const Point &p) const;
    Point operator-(const Point &p) const;
    Point operator* (long double k) const;
    long double dot(const Point &p) const;
};
struct Line {
    Point off, dir;
    Line(int a, int b);
    long double dist(Point p);
};
Point::Point(): x(0), y(0) {}
Point::Point(long double x, long double y): x(x), y(y) {}
Point Point::operator-() const{
    return Point(-x, -y);
}
Point& Point::operator+=(const Point &p) {
    x += p.x;
    y += p.y;
    return *this;
}
Point& Point::operator-=(const Point &p) {
    return *this += (-p);
}
Point Point::operator+(const Point &p) const {
    Point res = *this;
    return res += p;
}
Point Point::operator-(const Point &p) const {
    Point res = *this;
    return res -= p;
}
long double Point::dot(const Point &p) const {
    return x * p.x + y * p.y;
}
Point Point::operator* (long double k) const {
    return Point(x * k, y * k);
}

Line::Line(int a, int b) {
    off = Point(0, b);
    dir = Point(1, a);
}
long double Line::dist(Point p) {
    p -= off;
    Point delta = dir * (p.dot(dir) / dir.dot(dir)) - p;
    return sqrt(delta.dot(delta));
}

map<int, ld> mp0;
ld query0(int x) {
    if (mp0.find(x) != mp0.end()) {
        return mp0[x];
    }
    return mp0[x] = query(0, x);
}

void solve(int subtask_id, int n) {
    vi va, vb;
    vector<Line> vl;
    REP (i, 0, n) {
        int lo = -MAXA, hi = MAXA;
        if (subtask_id == 4) {
            lo = -500, hi = 500;
        }
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query0(mid1), q2 = query0(mid2);
            cerr << mid1 << ": " << q1 << '\n';
            cerr << ' ' << mid2 << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(0, mid1));
                q2 -= l.dist(Point(0, mid2));
            }
            //cerr << mid1 << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ": " << q2 << '\n';
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int b = INF;
        ld mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query0(i);
            for (Line l : vl) {
                q -= l.dist(Point(0, i));
            }
            if (mnto(mn, q)) {
                b = i;
            }
        }
        assert(b != INF);
        lo = -MAXA, hi = MAXA;
        if (subtask_id == 4) {
            lo = -500, hi = 500;
        }
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query(STEP, mid1 * STEP + b), q2 = query(STEP, mid2 * STEP + b);
            //cerr << mid1 << ' ' << mid1 * STEP + b << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ' ' << mid2 * STEP + b << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(STEP, mid1 * STEP + b));
                q2 -= l.dist(Point(STEP, mid2 * STEP + b));
            }
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int a = INF;
        mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query(STEP, i * STEP + b);
            for (Line l : vl) {
                q -= l.dist(Point(STEP, i * STEP + b));
            }
            if (mnto(mn, q)) {
                a = i;
            }
        }
        assert(a != INF);
        va.pb(a); vb.pb(b);
        vl.pb(Line(a, b));
    }
    the_lines_are(va, vb);
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 300 KB Output is correct
3 Correct 1 ms 208 KB Output is correct
4 Correct 1 ms 208 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 2 ms 208 KB Output is correct
2 Correct 2 ms 208 KB Output is correct
3 Correct 2 ms 208 KB Output is correct
4 Correct 2 ms 300 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 3 ms 308 KB Output is correct
2 Correct 3 ms 208 KB Output is correct
3 Correct 4 ms 208 KB Output is correct
4 Correct 2 ms 336 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Partially correct 68 ms 348 KB Output is partially correct
2 Partially correct 72 ms 320 KB Output is partially correct
3 Partially correct 66 ms 312 KB Output is partially correct
4 Partially correct 75 ms 356 KB Output is partially correct
# 결과 실행 시간 메모리 Grader output
1 Partially correct 24 ms 316 KB Output is partially correct
2 Partially correct 37 ms 336 KB Output is partially correct
3 Partially correct 37 ms 468 KB Output is partially correct
4 Partially correct 32 ms 312 KB Output is partially correct
# 결과 실행 시간 메모리 Grader output
1 Partially correct 68 ms 348 KB Output is partially correct
2 Partially correct 72 ms 320 KB Output is partially correct
3 Partially correct 66 ms 312 KB Output is partially correct
4 Partially correct 75 ms 356 KB Output is partially correct
5 Partially correct 24 ms 316 KB Output is partially correct
6 Partially correct 37 ms 336 KB Output is partially correct
7 Partially correct 37 ms 468 KB Output is partially correct
8 Partially correct 32 ms 312 KB Output is partially correct
9 Partially correct 79 ms 340 KB Output is partially correct
10 Partially correct 85 ms 432 KB Output is partially correct
11 Partially correct 101 ms 464 KB Output is partially correct
12 Partially correct 128 ms 456 KB Output is partially correct