Submission #743011

# Submission time Handle Problem Language Result Execution time Memory
743011 2023-05-17T07:23:15 Z maomao90 Nicelines (RMI20_nicelines) C++17
68.8944 / 100
164 ms 316 KB
#include <bits/stdc++.h>
#include "nice_lines.h"
using namespace std;

#define REP(i, j, k) for (int i = j; i < k; i++)
#define RREP(i, j, k) for (int i = j; i >= k; i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<ll> vll;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if(0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 100;
const int MAXA = 10000;
const ld EPS = 1e-12;
const ld STEP = 1e-5;

struct Point {
    long double x, y;
    Point();
    Point(long double x, long double y);
    Point operator-() const;
    Point& operator+=(const Point &p);
    Point& operator-=(const Point &p);
    Point operator+(const Point &p) const;
    Point operator-(const Point &p) const;
    Point operator* (long double k) const;
    long double dot(const Point &p) const;
};
struct Line {
    Point off, dir;
    Line(int a, int b);
    long double dist(Point p);
};
Point::Point(): x(0), y(0) {}
Point::Point(long double x, long double y): x(x), y(y) {}
Point Point::operator-() const{
    return Point(-x, -y);
}
Point& Point::operator+=(const Point &p) {
    x += p.x;
    y += p.y;
    return *this;
}
Point& Point::operator-=(const Point &p) {
    return *this += (-p);
}
Point Point::operator+(const Point &p) const {
    Point res = *this;
    return res += p;
}
Point Point::operator-(const Point &p) const {
    Point res = *this;
    return res -= p;
}
long double Point::dot(const Point &p) const {
    return x * p.x + y * p.y;
}
Point Point::operator* (long double k) const {
    return Point(x * k, y * k);
}

Line::Line(int a, int b) {
    off = Point(0, b);
    dir = Point(1, a);
}
long double Line::dist(Point p) {
    p -= off;
    Point delta = dir * (p.dot(dir) / dir.dot(dir)) - p;
    return sqrt(delta.dot(delta));
}

void solve(int subtask_id, int n) {
    vi va, vb;
    vector<Line> vl;
    REP (i, 0, n) {
        int lo = -MAXA, hi = MAXA;
        if (subtask_id == 4) {
            lo = -500, hi = 500;
        }
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query(0, mid1), q2 = query(0, mid2);
            //cerr << mid1 << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(0, mid1));
                q2 -= l.dist(Point(0, mid2));
            }
            //cerr << mid1 << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ": " << q2 << '\n';
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int b = INF;
        ld mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query(0, i);
            for (Line l : vl) {
                q -= l.dist(Point(0, i));
            }
            if (mnto(mn, q)) {
                b = i;
            }
        }
        assert(b != INF);
        lo = -MAXA, hi = MAXA;
        if (subtask_id == 4) {
            lo = -500, hi = 500;
        }
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query(STEP, mid1 * STEP + b), q2 = query(STEP, mid2 * STEP + b);
            //cerr << mid1 << ' ' << mid1 * STEP + b << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ' ' << mid2 * STEP + b << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(STEP, mid1 * STEP + b));
                q2 -= l.dist(Point(STEP, mid2 * STEP + b));
            }
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int a = INF;
        mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query(STEP, i * STEP + b);
            for (Line l : vl) {
                q -= l.dist(Point(STEP, i * STEP + b));
            }
            if (mnto(mn, q)) {
                a = i;
            }
        }
        assert(a != INF);
        va.pb(a); vb.pb(b);
        vl.pb(Line(a, b));
    }
    the_lines_are(va, vb);
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 2 ms 208 KB Output is correct
4 Correct 2 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 208 KB Output is correct
2 Correct 3 ms 296 KB Output is correct
3 Correct 3 ms 208 KB Output is correct
4 Correct 3 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 256 KB Output is correct
2 Correct 6 ms 208 KB Output is correct
3 Correct 4 ms 300 KB Output is correct
4 Correct 5 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 98 ms 296 KB Output is partially correct
2 Partially correct 85 ms 312 KB Output is partially correct
3 Partially correct 66 ms 316 KB Output is partially correct
4 Partially correct 103 ms 312 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 35 ms 208 KB Output is partially correct
2 Partially correct 33 ms 312 KB Output is partially correct
3 Partially correct 36 ms 208 KB Output is partially correct
4 Partially correct 35 ms 208 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 98 ms 296 KB Output is partially correct
2 Partially correct 85 ms 312 KB Output is partially correct
3 Partially correct 66 ms 316 KB Output is partially correct
4 Partially correct 103 ms 312 KB Output is partially correct
5 Partially correct 35 ms 208 KB Output is partially correct
6 Partially correct 33 ms 312 KB Output is partially correct
7 Partially correct 36 ms 208 KB Output is partially correct
8 Partially correct 35 ms 208 KB Output is partially correct
9 Partially correct 164 ms 292 KB Output is partially correct
10 Partially correct 134 ms 300 KB Output is partially correct
11 Partially correct 107 ms 312 KB Output is partially correct
12 Partially correct 106 ms 312 KB Output is partially correct