Submission #741222

# Submission time Handle Problem Language Result Execution time Memory
741222 2023-05-13T21:46:35 Z JakobZorz Art Exhibition (JOI18_art) C++14
100 / 100
184 ms 20884 KB
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
#include <stack>
#include <limits.h>
 
#define ll long long
using namespace std;
const int MOD = 1e9 + 7;
 
//#define SEGTREE
//#define TREE
//#define DSU
 
#ifdef SEGTREE
template<class Type>
class SegmentTree {
    Type (*func)(Type a, Type b);
    vector<Type> nodes;
    vector<int> l;
    vector<int> r;
    int size_log2;
    Type neutral;
    
    void init_node(int node) {
        if(node >= (1 << size_log2))
            return;
        
        l[2 * node] = l[node];
        r[2 * node] = (l[node] + r[node]) / 2;
        init_node(2 * node);
        
        l[2 * node + 1] = (l[node] + r[node]) / 2;
        r[2 * node + 1] = r[node];
        init_node(2 * node + 1);
        
        nodes[node] = func(nodes[2 * node], nodes[2 * node + 1]);
    }
    
    void update_node(int node) {
        if(node < (1 << size_log2))
            nodes[node] = func(nodes[2 * node], nodes[2 * node + 1]);
        
        if(node != 1)
            update_node(node / 2);
    }
    
    Type get(int node, int ll_, int rr) {
        if(rr <= l[node] || ll_ >= r[node])
            return neutral;
        
        if(ll_ <= l[node] && rr >= r[node])
            return nodes[node];
        
        Type left = get(2 * node, ll_, rr);
        Type right = get(2 * node + 1, ll_, rr);
        
        return func(left, right);
    }
    
public:
    SegmentTree(Type (*func)(Type a, Type b), vector<Type> vector, Type neutral) : func(func), neutral(neutral) {
        size_log2 = 0;
        while((1 << size_log2) < vector.size())
            size_log2++;
        
        nodes.resize((1 << size_log2) * 2);
        l.resize((1 << size_log2) * 2);
        r.resize((1 << size_log2) * 2);
        
        for(int i = 0; i < vector.size(); i++)
            nodes[(1 << size_log2) + i] = vector[i];
        
        l[1] = 0;
        r[1] = 1 << size_log2;
        init_node(1);
    }
    
    void set(int idx, Type el) {
        nodes[(1 << size_log2) + idx] = el;
        update_node((1 << size_log2) + idx);
    }
    
    Type get(int l, int r) {
        return get(1, l, r);
    }
    
    Type get(int idx) {
        return nodes[(1 << size_log2) + idx];
    }
    
    Type get() {
        return nodes[1];
    }
    
    int get_first_larger_or_eq_than(int bound) {
        return get_first_larger_or_eq_than(1, bound);
    }
    
    int get_first_larger_or_eq_than(int node, int bound) {
        if(node >= (1 << size_log2)) {
            return node - (1 << size_log2);
        }
        
        if(nodes[node * 2] > bound)
            return get_first_larger_or_eq_than(node * 2, bound);
        else
            return get_first_larger_or_eq_than(node * 2 + 1, bound - nodes[node * 2]);
    }
};
 
#endif
 
#ifdef TREE
#define POW 18
 
struct Node {
    int parents[POW];
    vector<int> conns;
    int depth;
    int value;
    int subtree_depth;
    int subtree_size;
    int euler;
};

ll add(ll a, ll b) {
    return a + b;
}

SegmentTree<ll> euler_path(add, vector<ll>(200001, 0), 0);

Node nodes[200000];
int n;
 
int setup(int node, int depth, int euler, ll dist) {
    dist += nodes[node].value;
    nodes[node].depth = depth;
    euler_path.set(euler, euler_path.get(euler) + dist);
    euler_path.set(euler + 1, euler_path.get(euler + 1) - dist);
    nodes[node].euler = euler++;
    
    
    for(int i = 1; i < POW; i++) {
        nodes[node].parents[i] = nodes[nodes[node].parents[i - 1]].parents[i - 1];
    }
    
    int size = 1;
    
    for(int i = 0; i < nodes[node].conns.size(); i++) {
        int child = nodes[node].conns[i];
        if(child != nodes[node].parents[0]) {
            nodes[child].parents[0] = node;
            euler = setup(child, depth + 1, euler, dist);
            size += nodes[child].subtree_size;
        }
    }
    nodes[node].subtree_size = size;
    return euler;
}
 
void setup_tree(int root) {
    nodes[root].parents[0] = root;
    setup(root, 0, 0, 0);
}
 
int get_subtree_depth(int node) {
    if(nodes[node].subtree_depth)
        return nodes[node].subtree_depth;
    
    int max_depth = 1;
    for(int child : nodes[node].conns) {
        if(child == nodes[node].parents[0])
            continue;
        max_depth = max(max_depth, get_subtree_depth(child) + 1);
    }
    nodes[node].subtree_depth = max_depth;
    return max_depth;
}
 
int get_parent(int node, int depth) {
    if(depth > nodes[node].depth)
        return -1;
    
    int climber = node;
    for(int i = 0; i < POW; i++) {
        if(depth & (1 << i) && climber != -1)
            climber = nodes[climber].parents[i];
    }
    
    return climber;
}
 
int lca(int a, int b) {
    if(nodes[a].depth < nodes[b].depth)
        swap(a, b);
    
    a = get_parent(a, nodes[a].depth - nodes[b].depth);
    
    if(a == b)
        return a;
    
    for(int i = POW - 1; i >= 0; i--) {
        if(nodes[a].parents[i] != nodes[b].parents[i]) {
            a = nodes[a].parents[i];
            b = nodes[b].parents[i];
        }
    }
    
    return nodes[a].parents[0];
}
 
#endif
 
#ifdef DSU
 
class Dsu {
    vector<int> arr;
    int num_sets;
    
public:
    Dsu(int size) {
        arr = vector<int>(size, -1);
        num_sets = size;
    }
    
    int merge(int a, int b) {
        a = get(a);
        b = get(b);
        
        if(a == b)
            return a;
        
        if(arr[a] > arr[b])
            swap(a, b);
        
        arr[a] += arr[b];
        arr[b] = a;
        num_sets--;
        return a;
    }
    
    int get(int a) {
        if(arr[a] < 0)
            return a;
        arr[a] = get(arr[a]);
        return get(arr[a]);
    }
    
    int get_size(int a) {
        return -arr[get(a)];
    }
    
    int get_num_sets() {
        return num_sets;
    }
};
 
#endif

int n;
pair<ll,ll> arr[500000];

int main() {
    ios::sync_with_stdio(false);
    cout.tie(NULL);
    cin.tie(NULL);
    
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>arr[i].first>>arr[i].second;
    
    sort(arr, arr+n);
    
    ll m=LONG_LONG_MAX, r=0, s=0;
    for(int i=0;i<n;i++){
        m=min(m,s-arr[i].first);
        s+=arr[i].second;
        ll curr=s-arr[i].first;
        r=max(r,curr-m);
    }
    
    cout<<r<<endl;
    
    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 324 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 324 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 324 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 324 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 328 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 328 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 328 KB Output is correct
23 Correct 1 ms 336 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 324 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 324 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 328 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 328 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 328 KB Output is correct
23 Correct 1 ms 336 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 2 ms 520 KB Output is correct
28 Correct 2 ms 468 KB Output is correct
29 Correct 2 ms 468 KB Output is correct
30 Correct 2 ms 520 KB Output is correct
31 Correct 3 ms 468 KB Output is correct
32 Correct 2 ms 468 KB Output is correct
33 Correct 3 ms 468 KB Output is correct
34 Correct 3 ms 468 KB Output is correct
35 Correct 3 ms 468 KB Output is correct
36 Correct 2 ms 464 KB Output is correct
37 Correct 2 ms 468 KB Output is correct
38 Correct 2 ms 516 KB Output is correct
39 Correct 2 ms 468 KB Output is correct
40 Correct 2 ms 468 KB Output is correct
41 Correct 2 ms 524 KB Output is correct
42 Correct 2 ms 516 KB Output is correct
43 Correct 2 ms 468 KB Output is correct
44 Correct 3 ms 468 KB Output is correct
45 Correct 2 ms 468 KB Output is correct
46 Correct 2 ms 468 KB Output is correct
47 Correct 2 ms 468 KB Output is correct
48 Correct 2 ms 468 KB Output is correct
49 Correct 2 ms 468 KB Output is correct
50 Correct 2 ms 448 KB Output is correct
51 Correct 2 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 324 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 324 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 328 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 328 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 328 KB Output is correct
23 Correct 1 ms 336 KB Output is correct
24 Correct 1 ms 212 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 2 ms 520 KB Output is correct
28 Correct 2 ms 468 KB Output is correct
29 Correct 2 ms 468 KB Output is correct
30 Correct 2 ms 520 KB Output is correct
31 Correct 3 ms 468 KB Output is correct
32 Correct 2 ms 468 KB Output is correct
33 Correct 3 ms 468 KB Output is correct
34 Correct 3 ms 468 KB Output is correct
35 Correct 3 ms 468 KB Output is correct
36 Correct 2 ms 464 KB Output is correct
37 Correct 2 ms 468 KB Output is correct
38 Correct 2 ms 516 KB Output is correct
39 Correct 2 ms 468 KB Output is correct
40 Correct 2 ms 468 KB Output is correct
41 Correct 2 ms 524 KB Output is correct
42 Correct 2 ms 516 KB Output is correct
43 Correct 2 ms 468 KB Output is correct
44 Correct 3 ms 468 KB Output is correct
45 Correct 2 ms 468 KB Output is correct
46 Correct 2 ms 468 KB Output is correct
47 Correct 2 ms 468 KB Output is correct
48 Correct 2 ms 468 KB Output is correct
49 Correct 2 ms 468 KB Output is correct
50 Correct 2 ms 448 KB Output is correct
51 Correct 2 ms 468 KB Output is correct
52 Correct 170 ms 20620 KB Output is correct
53 Correct 184 ms 20684 KB Output is correct
54 Correct 175 ms 20764 KB Output is correct
55 Correct 166 ms 20688 KB Output is correct
56 Correct 166 ms 20816 KB Output is correct
57 Correct 161 ms 20684 KB Output is correct
58 Correct 165 ms 20768 KB Output is correct
59 Correct 175 ms 20776 KB Output is correct
60 Correct 163 ms 20856 KB Output is correct
61 Correct 164 ms 20644 KB Output is correct
62 Correct 160 ms 20884 KB Output is correct
63 Correct 163 ms 20772 KB Output is correct
64 Correct 175 ms 20872 KB Output is correct
65 Correct 164 ms 20716 KB Output is correct
66 Correct 170 ms 20772 KB Output is correct
67 Correct 175 ms 20848 KB Output is correct
68 Correct 166 ms 20716 KB Output is correct