답안 #739721

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
739721 2023-05-11T06:46:42 Z torisasami Job Scheduling (IOI19_job) C++14
100 / 100
347 ms 41428 KB
// #define _GLIBCXX_DEBUG
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long& x, long long& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<int> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return (false);
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0) return (k);
        return (data[k] = find(data[k]));
    }

    int size(int k) { return (-data[find(k)]); }

    bool same(int x, int y) { return find(x) == find(y); }

    int operator[](int k) { return find(k); }
};

template <int mod> struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int& operator+=(const Mod_Int& p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator-=(const Mod_Int& p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator*=(const Mod_Int& p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int& operator/=(const Mod_Int& p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int& operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int& operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int& p) const { return x == p.x; }

    bool operator!=(const Mod_Int& p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const Mod_Int& p) {
        return os << p.x;
    }

    friend istream& operator>>(istream& is, Mod_Int& p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1) ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

template <typename T> T modinv(T a, const T& m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

ll divide_int(ll a, ll b) {
    if (b < 0) a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1) ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
template <typename T>
struct Tree_Optimal_Order {
    using F = function<T(T, T)>;
    using C = function<bool(T, T)>;
 
    int n;
    const F f;
    const C comp;
    vector<vector<int>> g;
    vector<int> par, h, l, to;
    vector<T> val;
 
    // comp(i, j) == true  <=>  pref[i] < pref[j]
    Tree_Optimal_Order(int n, const F f, const C comp) : n(n), f(f), comp(comp), g(n), par(n), h(n), l(n), to(n), val(n) {}
 
    void add_edge(int u, int v) {
        g[u].emplace_back(v), g[v].emplace_back(u);
    }
 
    void dfs(int k) {
        for (auto &e: g[k]) {
            if (e != par[k])
                par[e] = k, dfs(e);
        }
    }
    
    int head(int k) {
        if (h[k] == -1)
            return k;
        return h[k] = head(h[k]);
    }
 
    void merge(int k) {
        int p = head(par[k]);
        h[k] = p, to[l[p]] = k, l[p] = l[k], val[p] = f(val[p], val[k]);
    }
    
    vector<int> solve(vector<T> v, int root = 0) {
        val = move(v);
        fill(par.begin(), par.end(), -1);
        dfs(root);
        fill(h.begin(), h.end(), -1);
        iota(l.begin(), l.end(), 0);
        vector<bool> vis(n, false);
        using data = pair<int, T>;
        priority_queue<data, vector<data>, function<bool(data, data)>> que(
            [&](data x, data y){return comp(x.second, y.second);}
        );
        for (int i = 0; i < n; i++) if (i != root) que.push({i, val[i]});
        while(que.size()) {
            int now = que.top().first;
            que.pop();
            if (vis[now]) continue;
            vis[now] = true;
            merge(now);
            if (head(now) != root)
                que.push({head(now), val[head(now)]});
        }
        vector<int> ret{root};
        for (int i = 0; i < n - 1; i++)
            ret.emplace_back(to[ret.back()]);
        return ret;
    }
};

ll scheduling_cost(vector<int> p, vector<int> u, vector<int> d) {
    int n = sz(p);
    auto f = [](pll a, pll b){return make_pair(a.first + b.first, a.second + b.second);};
    auto comp = [](pll a, pll b){return a.first * b.second < a.second * b.first;};
    Tree_Optimal_Order<pll> g(n, f, comp);
    rep2(i, 1, n) g.add_edge(p[i], i);
    vector<pll> val;
    rep(i, n) val.eb(u[i], d[i]);
    auto ret = g.solve(val);
    ll ans = 0, s = 0;
    rep(i, n) s += d[ret[i]], ans += s * u[ret[i]];
    return ans;
}
// ----- library -------
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 296 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 70 ms 10632 KB Output is correct
6 Correct 150 ms 20988 KB Output is correct
7 Correct 231 ms 33444 KB Output is correct
8 Correct 330 ms 41352 KB Output is correct
9 Correct 336 ms 41376 KB Output is correct
10 Correct 332 ms 41364 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 316 ms 41360 KB Output is correct
13 Correct 305 ms 41420 KB Output is correct
14 Correct 301 ms 41316 KB Output is correct
15 Correct 293 ms 41352 KB Output is correct
16 Correct 290 ms 41348 KB Output is correct
17 Correct 321 ms 41340 KB Output is correct
18 Correct 338 ms 41404 KB Output is correct
19 Correct 311 ms 41384 KB Output is correct
20 Correct 202 ms 41428 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 202 ms 35492 KB Output is correct
5 Correct 192 ms 35468 KB Output is correct
6 Correct 199 ms 35612 KB Output is correct
7 Correct 196 ms 35460 KB Output is correct
8 Correct 193 ms 35472 KB Output is correct
9 Correct 198 ms 35444 KB Output is correct
10 Correct 200 ms 35456 KB Output is correct
11 Correct 193 ms 35476 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 9 ms 2260 KB Output is correct
6 Correct 198 ms 35468 KB Output is correct
7 Correct 196 ms 35460 KB Output is correct
8 Correct 199 ms 35588 KB Output is correct
9 Correct 199 ms 35568 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 2 ms 596 KB Output is correct
12 Correct 7 ms 2040 KB Output is correct
13 Correct 8 ms 2160 KB Output is correct
14 Correct 197 ms 35440 KB Output is correct
15 Correct 200 ms 35484 KB Output is correct
16 Correct 202 ms 35568 KB Output is correct
17 Correct 197 ms 35580 KB Output is correct
18 Correct 203 ms 35468 KB Output is correct
19 Correct 199 ms 35552 KB Output is correct
20 Correct 190 ms 35448 KB Output is correct
21 Correct 200 ms 35456 KB Output is correct
22 Correct 204 ms 35476 KB Output is correct
23 Correct 195 ms 35468 KB Output is correct
24 Correct 212 ms 35580 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 319 ms 38000 KB Output is correct
3 Correct 337 ms 41084 KB Output is correct
4 Correct 316 ms 41040 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 300 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 300 KB Output is correct
6 Correct 1 ms 296 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 300 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 296 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 70 ms 10632 KB Output is correct
6 Correct 150 ms 20988 KB Output is correct
7 Correct 231 ms 33444 KB Output is correct
8 Correct 330 ms 41352 KB Output is correct
9 Correct 336 ms 41376 KB Output is correct
10 Correct 332 ms 41364 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 316 ms 41360 KB Output is correct
13 Correct 305 ms 41420 KB Output is correct
14 Correct 301 ms 41316 KB Output is correct
15 Correct 293 ms 41352 KB Output is correct
16 Correct 290 ms 41348 KB Output is correct
17 Correct 321 ms 41340 KB Output is correct
18 Correct 338 ms 41404 KB Output is correct
19 Correct 311 ms 41384 KB Output is correct
20 Correct 202 ms 41428 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 202 ms 35492 KB Output is correct
25 Correct 192 ms 35468 KB Output is correct
26 Correct 199 ms 35612 KB Output is correct
27 Correct 196 ms 35460 KB Output is correct
28 Correct 193 ms 35472 KB Output is correct
29 Correct 198 ms 35444 KB Output is correct
30 Correct 200 ms 35456 KB Output is correct
31 Correct 193 ms 35476 KB Output is correct
32 Correct 0 ms 212 KB Output is correct
33 Correct 0 ms 212 KB Output is correct
34 Correct 1 ms 212 KB Output is correct
35 Correct 1 ms 468 KB Output is correct
36 Correct 9 ms 2260 KB Output is correct
37 Correct 198 ms 35468 KB Output is correct
38 Correct 196 ms 35460 KB Output is correct
39 Correct 199 ms 35588 KB Output is correct
40 Correct 199 ms 35568 KB Output is correct
41 Correct 0 ms 212 KB Output is correct
42 Correct 2 ms 596 KB Output is correct
43 Correct 7 ms 2040 KB Output is correct
44 Correct 8 ms 2160 KB Output is correct
45 Correct 197 ms 35440 KB Output is correct
46 Correct 200 ms 35484 KB Output is correct
47 Correct 202 ms 35568 KB Output is correct
48 Correct 197 ms 35580 KB Output is correct
49 Correct 203 ms 35468 KB Output is correct
50 Correct 199 ms 35552 KB Output is correct
51 Correct 190 ms 35448 KB Output is correct
52 Correct 200 ms 35456 KB Output is correct
53 Correct 204 ms 35476 KB Output is correct
54 Correct 195 ms 35468 KB Output is correct
55 Correct 212 ms 35580 KB Output is correct
56 Correct 1 ms 212 KB Output is correct
57 Correct 319 ms 38000 KB Output is correct
58 Correct 337 ms 41084 KB Output is correct
59 Correct 316 ms 41040 KB Output is correct
60 Correct 1 ms 212 KB Output is correct
61 Correct 1 ms 300 KB Output is correct
62 Correct 1 ms 340 KB Output is correct
63 Correct 1 ms 340 KB Output is correct
64 Correct 1 ms 300 KB Output is correct
65 Correct 1 ms 296 KB Output is correct
66 Correct 1 ms 212 KB Output is correct
67 Correct 1 ms 212 KB Output is correct
68 Correct 1 ms 340 KB Output is correct
69 Correct 1 ms 340 KB Output is correct
70 Correct 1 ms 212 KB Output is correct
71 Correct 1 ms 340 KB Output is correct
72 Correct 1 ms 340 KB Output is correct
73 Correct 1 ms 300 KB Output is correct
74 Correct 1 ms 212 KB Output is correct
75 Correct 1 ms 340 KB Output is correct
76 Correct 1 ms 340 KB Output is correct
77 Correct 0 ms 212 KB Output is correct
78 Correct 1 ms 340 KB Output is correct
79 Correct 1 ms 212 KB Output is correct
80 Correct 1 ms 212 KB Output is correct
81 Correct 1 ms 212 KB Output is correct
82 Correct 1 ms 304 KB Output is correct
83 Correct 1 ms 296 KB Output is correct
84 Correct 1 ms 212 KB Output is correct
85 Correct 1 ms 212 KB Output is correct
86 Correct 0 ms 212 KB Output is correct
87 Correct 1 ms 212 KB Output is correct
88 Correct 5 ms 1236 KB Output is correct
89 Correct 9 ms 1748 KB Output is correct
90 Correct 11 ms 2192 KB Output is correct
91 Correct 64 ms 9776 KB Output is correct
92 Correct 131 ms 19080 KB Output is correct
93 Correct 299 ms 37864 KB Output is correct
94 Correct 307 ms 37880 KB Output is correct
95 Correct 304 ms 37976 KB Output is correct
96 Correct 304 ms 37916 KB Output is correct
97 Correct 295 ms 38108 KB Output is correct
98 Correct 290 ms 37764 KB Output is correct
99 Correct 268 ms 38136 KB Output is correct
100 Correct 309 ms 37880 KB Output is correct
101 Correct 317 ms 37784 KB Output is correct
102 Correct 246 ms 37872 KB Output is correct
103 Correct 328 ms 37856 KB Output is correct
104 Correct 347 ms 37848 KB Output is correct
105 Correct 283 ms 38016 KB Output is correct
106 Correct 213 ms 38136 KB Output is correct