// #define _GLIBCXX_DEBUG
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
// __int128_t gcd(__int128_t a, __int128_t b) {
// if (a == 0)
// return b;
// if (b == 0)
// return a;
// __int128_t cnt = a % b;
// while (cnt != 0) {
// a = b;
// b = cnt;
// cnt = a % b;
// }
// return b;
// }
long long extGCD(long long a, long long b, long long& x, long long& y) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long long d = extGCD(b, a % b, y, x);
y -= a / b * x;
return d;
}
struct UnionFind {
vector<int> data;
int num;
UnionFind(int sz) {
data.assign(sz, -1);
num = sz;
}
bool unite(int x, int y) {
x = find(x), y = find(y);
if (x == y) return (false);
if (data[x] > data[y]) swap(x, y);
data[x] += data[y];
data[y] = x;
num--;
return (true);
}
int find(int k) {
if (data[k] < 0) return (k);
return (data[k] = find(data[k]));
}
int size(int k) { return (-data[find(k)]); }
bool same(int x, int y) { return find(x) == find(y); }
int operator[](int k) { return find(k); }
};
template <int mod> struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int& operator+=(const Mod_Int& p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int& operator-=(const Mod_Int& p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int& operator*=(const Mod_Int& p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int& operator/=(const Mod_Int& p) {
*this *= p.inverse();
return *this;
}
Mod_Int& operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int& operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int& p) const { return x == p.x; }
bool operator!=(const Mod_Int& p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream& operator<<(ostream& os, const Mod_Int& p) {
return os << p.x;
}
friend istream& operator>>(istream& is, Mod_Int& p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
ll mpow2(ll x, ll n, ll mod) {
ll ans = 1;
x %= mod;
while (n != 0) {
if (n & 1) ans = ans * x % mod;
x = x * x % mod;
n = n >> 1;
}
ans %= mod;
return ans;
}
template <typename T> T modinv(T a, const T& m) {
T b = m, u = 1, v = 0;
while (b > 0) {
T t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % m : (m - (-u) % m) % m;
}
ll divide_int(ll a, ll b) {
if (b < 0) a = -a, b = -b;
return (a >= 0 ? a / b : (a - b + 1) / b);
}
// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;
mint mpow(mint x, ll n) {
bool rev = n < 0;
n = abs(n);
mint ans = 1;
while (n != 0) {
if (n & 1) ans *= x;
x *= x;
n = n >> 1;
}
return (rev ? ans.inverse() : ans);
}
// ----- library -------
template <typename T>
struct Tree_Optimal_Order {
using F = function<T(T, T)>;
using C = function<bool(T, T)>;
int n;
const F f;
const C comp;
vector<vector<int>> g;
vector<int> par, h, l, to;
vector<T> val;
// comp(i, j) == true <=> pref[i] < pref[j]
Tree_Optimal_Order(int n, const F f, const C comp) : n(n), f(f), comp(comp), g(n), par(n), h(n), l(n), to(n), val(n) {}
void add_edge(int u, int v) {
g[u].emplace_back(v), g[v].emplace_back(u);
}
void dfs(int k) {
for (auto &e: g[k]) {
if (e != par[k])
par[e] = k, dfs(e);
}
}
int head(int k) {
if (h[k] == -1)
return k;
return h[k] = head(h[k]);
}
void merge(int k) {
int p = head(par[k]);
h[k] = p, to[l[p]] = k, l[p] = l[k], val[p] = f(val[p], val[k]);
}
vector<int> solve(vector<T> v, int root = 0) {
val = move(v);
fill(par.begin(), par.end(), -1);
dfs(root);
fill(h.begin(), h.end(), -1);
iota(l.begin(), l.end(), 0);
vector<bool> vis(n, false);
priority_queue<int, vector<int>, function<bool(int, int)>> que(
[&](int i, int j){return comp(val[i], val[j]);}
);
for (int i = 0; i < n; i++) if (i != root) que.push(i);
while (que.size()) {
int now = que.top();
que.pop();
if (vis[now]) continue;
vis[now] = true;
merge(now);
if (head(now) != root)
que.push(head(now));
}
vector<int> ret{root};
for (int i = 0; i < n - 1; i++)
ret.emplace_back(to[ret.back()]);
return ret;
}
};
ll scheduling_cost(vector<ll> p, vector<ll> u, vector<ll> d) {
int n = sz(p);
auto f = [](pll a, pll b){return make_pair(a.first + b.first, a.second + b.second);};
auto comp = [](pll a, pll b){return a.first * b.second < a.second * b.first;};
Tree_Optimal_Order<pll> g(n, f, comp);
rep2(i, 1, n) g.add_edge(p[i], i);
vector<pll> val;
rep(i, n) val.eb(u[i], d[i]);
auto ret = g.solve(val);
ll ans = 0, s = 0;
rep(i, n) s += d[ret[i]], ans += s * u[ret[i]];
return ans;
}
// ----- library -------
Compilation message
/usr/bin/ld: /tmp/ccJgiSGz.o: in function `main':
grader.cpp:(.text.startup+0x2b1): undefined reference to `scheduling_cost(std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> >, std::vector<int, std::allocator<int> >)'
collect2: error: ld returned 1 exit status