답안 #739714

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
739714 2023-05-11T06:13:01 Z torisasami Job Scheduling (IOI19_job) C++14
24 / 100
296 ms 34620 KB
// #define _GLIBCXX_DEBUG
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long& x, long long& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct UnionFind {
    vector<int> data;
    int num;

    UnionFind(int sz) {
        data.assign(sz, -1);
        num = sz;
    }

    bool unite(int x, int y) {
        x = find(x), y = find(y);
        if (x == y) return (false);
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y];
        data[y] = x;
        num--;
        return (true);
    }

    int find(int k) {
        if (data[k] < 0) return (k);
        return (data[k] = find(data[k]));
    }

    int size(int k) { return (-data[find(k)]); }

    bool same(int x, int y) { return find(x) == find(y); }

    int operator[](int k) { return find(k); }
};

template <int mod> struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int& operator+=(const Mod_Int& p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator-=(const Mod_Int& p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator*=(const Mod_Int& p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int& operator/=(const Mod_Int& p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int& operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int& operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int& p) const { return x == p.x; }

    bool operator!=(const Mod_Int& p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const Mod_Int& p) {
        return os << p.x;
    }

    friend istream& operator>>(istream& is, Mod_Int& p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1) ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

template <typename T> T modinv(T a, const T& m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

ll divide_int(ll a, ll b) {
    if (b < 0) a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1) ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
template <typename T>
struct Tree_Optimal_Order {
    using F = function<T(T, T)>;
    using C = function<bool(T, T)>;
 
    int n;
    const F f;
    const C comp;
    vector<vector<int>> g;
    vector<int> par, h, l, to;
    vector<T> val;
 
    // comp(i, j) == true  <=>  pref[i] < pref[j]
    Tree_Optimal_Order(int n, const F f, const C comp) : n(n), f(f), comp(comp), g(n), par(n), h(n), l(n), to(n), val(n) {}
 
    void add_edge(int u, int v) {
        g[u].emplace_back(v), g[v].emplace_back(u);
    }
 
    void dfs(int k) {
        for (auto &e: g[k]) {
            if (e != par[k])
                par[e] = k, dfs(e);
        }
    }
    
    int head(int k) {
        if (h[k] == -1)
            return k;
        return h[k] = head(h[k]);
    }
 
    void merge(int k) {
        int p = head(par[k]);
        h[k] = p, to[l[p]] = k, l[p] = l[k], val[p] = f(val[p], val[k]);
    }
    
    vector<int> solve(vector<T> v, int root = 0) {
        val = move(v);
        fill(par.begin(), par.end(), -1);
        dfs(root);
        fill(h.begin(), h.end(), -1);
        iota(l.begin(), l.end(), 0);
        vector<bool> vis(n, false);
        priority_queue<int, vector<int>, function<bool(int, int)>> que(
            [&](int i, int j){return comp(val[i], val[j]);}
        );
        for (int i = 0; i < n; i++) if (i != root) que.push(i);
        while (que.size()) {
            int now = que.top();
            que.pop();
            if (vis[now]) continue;
            vis[now] = true;
            merge(now);
            if (head(now) != root)
                que.push(head(now));
        }
        vector<int> ret{root};
        for (int i = 0; i < n - 1; i++)
            ret.emplace_back(to[ret.back()]);
        return ret;
    }
};

ll scheduling_cost(vector<int> p, vector<int> u, vector<int> d) {
    int n = sz(p);
    auto f = [](pll a, pll b){return make_pair(a.first + b.first, a.second + b.second);};
    auto comp = [](pll a, pll b){return a.first * b.second < a.second * b.first;};
    Tree_Optimal_Order<pll> g(n, f, comp);
    rep2(i, 1, n) g.add_edge(p[i], i);
    vector<pll> val;
    rep(i, n) val.eb(u[i], d[i]);
    auto ret = g.solve(val);
    ll ans = 0, s = 0;
    rep(i, n) s += d[ret[i]], ans += s * u[ret[i]];
    return ans;
}
// ----- library -------
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 59 ms 8796 KB Output is correct
6 Correct 125 ms 17432 KB Output is correct
7 Correct 197 ms 26204 KB Output is correct
8 Correct 261 ms 34596 KB Output is correct
9 Correct 286 ms 34588 KB Output is correct
10 Correct 272 ms 34588 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 296 ms 34620 KB Output is correct
13 Correct 221 ms 34548 KB Output is correct
14 Correct 229 ms 34556 KB Output is correct
15 Correct 207 ms 34592 KB Output is correct
16 Correct 221 ms 34556 KB Output is correct
17 Correct 253 ms 34536 KB Output is correct
18 Correct 273 ms 34552 KB Output is correct
19 Correct 184 ms 34584 KB Output is correct
20 Correct 156 ms 34568 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 182 ms 29344 KB Output is correct
5 Correct 156 ms 29376 KB Output is correct
6 Correct 173 ms 29364 KB Output is correct
7 Correct 163 ms 29368 KB Output is correct
8 Correct 164 ms 29372 KB Output is correct
9 Correct 166 ms 29368 KB Output is correct
10 Correct 160 ms 29384 KB Output is correct
11 Correct 168 ms 29396 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 7 ms 1872 KB Output is correct
6 Correct 160 ms 29360 KB Output is correct
7 Correct 160 ms 29372 KB Output is correct
8 Correct 177 ms 29368 KB Output is correct
9 Correct 163 ms 29376 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 6 ms 1620 KB Output is correct
13 Correct 7 ms 1872 KB Output is correct
14 Correct 173 ms 29392 KB Output is correct
15 Correct 168 ms 29420 KB Output is correct
16 Correct 158 ms 29384 KB Output is correct
17 Correct 170 ms 29364 KB Output is correct
18 Correct 171 ms 29368 KB Output is correct
19 Correct 172 ms 29308 KB Output is correct
20 Correct 174 ms 29368 KB Output is correct
21 Correct 182 ms 29376 KB Output is correct
22 Correct 178 ms 29364 KB Output is correct
23 Correct 175 ms 29376 KB Output is correct
24 Correct 164 ms 29372 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Incorrect 271 ms 31204 KB Output isn't correct
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Incorrect 0 ms 212 KB Output isn't correct
3 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 59 ms 8796 KB Output is correct
6 Correct 125 ms 17432 KB Output is correct
7 Correct 197 ms 26204 KB Output is correct
8 Correct 261 ms 34596 KB Output is correct
9 Correct 286 ms 34588 KB Output is correct
10 Correct 272 ms 34588 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 296 ms 34620 KB Output is correct
13 Correct 221 ms 34548 KB Output is correct
14 Correct 229 ms 34556 KB Output is correct
15 Correct 207 ms 34592 KB Output is correct
16 Correct 221 ms 34556 KB Output is correct
17 Correct 253 ms 34536 KB Output is correct
18 Correct 273 ms 34552 KB Output is correct
19 Correct 184 ms 34584 KB Output is correct
20 Correct 156 ms 34568 KB Output is correct
21 Correct 0 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 0 ms 212 KB Output is correct
24 Correct 182 ms 29344 KB Output is correct
25 Correct 156 ms 29376 KB Output is correct
26 Correct 173 ms 29364 KB Output is correct
27 Correct 163 ms 29368 KB Output is correct
28 Correct 164 ms 29372 KB Output is correct
29 Correct 166 ms 29368 KB Output is correct
30 Correct 160 ms 29384 KB Output is correct
31 Correct 168 ms 29396 KB Output is correct
32 Correct 0 ms 212 KB Output is correct
33 Correct 1 ms 212 KB Output is correct
34 Correct 1 ms 212 KB Output is correct
35 Correct 1 ms 340 KB Output is correct
36 Correct 7 ms 1872 KB Output is correct
37 Correct 160 ms 29360 KB Output is correct
38 Correct 160 ms 29372 KB Output is correct
39 Correct 177 ms 29368 KB Output is correct
40 Correct 163 ms 29376 KB Output is correct
41 Correct 0 ms 212 KB Output is correct
42 Correct 1 ms 468 KB Output is correct
43 Correct 6 ms 1620 KB Output is correct
44 Correct 7 ms 1872 KB Output is correct
45 Correct 173 ms 29392 KB Output is correct
46 Correct 168 ms 29420 KB Output is correct
47 Correct 158 ms 29384 KB Output is correct
48 Correct 170 ms 29364 KB Output is correct
49 Correct 171 ms 29368 KB Output is correct
50 Correct 172 ms 29308 KB Output is correct
51 Correct 174 ms 29368 KB Output is correct
52 Correct 182 ms 29376 KB Output is correct
53 Correct 178 ms 29364 KB Output is correct
54 Correct 175 ms 29376 KB Output is correct
55 Correct 164 ms 29372 KB Output is correct
56 Correct 0 ms 212 KB Output is correct
57 Incorrect 271 ms 31204 KB Output isn't correct
58 Halted 0 ms 0 KB -