Submission #739361

# Submission time Handle Problem Language Result Execution time Memory
739361 2023-05-10T11:06:19 Z fractlpaca Horses (IOI15_horses) C++17
100 / 100
339 ms 70752 KB
#include "horses.h"
#include <vector>
#include <algorithm>

#define v vector
#define ll long long
#define fi first
#define se second

#define MOD ((ll) 1000000007)
#define INF ((ll) 1000000001)

using namespace std;

int *x;
int *y;
int n;


// Subtask 1

// int solve() {
// 	int ma = 0;
// 	int pop = 1;
// 	for(int i=0; i<n; i++) {
// 		pop*=x[i];
// 		ma = max(ma, pop*y[i]);
// 	}
// 	return ma%MOD;
// }

// int init(int N, int X[], int Y[]) {
// 	n = N;
// 	x = X;
//  	y = Y;
// 	return solve();
// }

// int updateX(int pos, int val) {
// 	x[pos] = val;
// 	return solve();
// }

// int updateY(int pos, int val) {
// 	y[pos] = val;
// 	return solve();
// }


//Subtask 2

// int solve() {
// 	int max_i = n-1;
// 	ll pop = x[n-1];
// 	for(int i=n-2; i>=0; i--) {
// 		if (y[i] > y[max_i]*pop) {
// 			max_i = i;
// 			pop=1;
// 		}
// 		pop = min(pop*x[i], INF);
// 	}
 
// 	pop=1;
// 	for(int i=0; i<=max_i; i++){
// 		pop = (pop*x[i])%MOD;
// 	}
// 	return (int) (pop*y[max_i])%MOD;
// }
 
// int init(int N, int X[], int Y[]) {
// 	n = N;
// 	x = X;
// 	y = Y;

// 	return solve();
// }
 
// int updateX(int pos, int val) {
// 	x[pos] = val;
// 	return solve();
// }
 
// int updateY(int pos, int val) {
// 	y[pos] = val;
// 	return solve();
// }


// Subtask 3

// v<ll> xs_mults;

// ll query_xs(int L, int R, int l, int r, int index) {
// 	if (r<L || l>R) return 1;
// 	if (l>=L and r<=R) return xs_mults[index];
// 	int mid = (l+r)/2;
// 	ll subl = query_xs(L, R, l, mid, index*2);
// 	ll subr = query_xs(L, R, mid+1, r, index*2+1);
// 	return (subl*subr)%MOD;
// }

// void update_xs(int pos, int value, int l, int r, int index) {
// 	int mid = (l+r)/2;
// 	if (l==r){
// 		xs_mults[index] = value;
// 		return;
// 	}
// 	if (pos <= mid){
// 		update_xs(pos, value, l, mid, index*2);
// 	} else {
// 		update_xs(pos, value, mid+1, r, index*2+1);
// 	}
// 	xs_mults[index] = (xs_mults[index*2]*xs_mults[index*2+1])%MOD;
// }

// int solve() {
// 	int max_i = n-1;
// 	ll pop = x[n-1];
// 	for(int i=n-2; i>=0 && i>=n-30; i--) {
// 		if (y[i] > y[max_i]*pop) {
// 			max_i = i;
// 			pop=1;
// 		}
// 		pop = min(pop*x[i], INF);
// 	}
// 	ll mult = query_xs(0, max_i, 0, n-1, 1);
// 	return (int) ((mult*y[max_i])%MOD);
// }

// int init(int N, int X[], int Y[]) {
// 	n = N;
// 	x = X;
// 	y = Y;
// 	xs_mults = v<ll> (4*n, 1);
// 	for(int i=0; i<n; i++) {
// 		update_xs(i, x[i], 0, n-1, 1);
// 	}
// 	return solve();
// }

// int updateX(int pos, int val) {
// 	x[pos] = val;
// 	update_xs(pos, val, 0, n-1, 1);
// 	return solve();
// }

// int updateY(int pos, int val) {
// 	y[pos] = val;
// 	return solve();
// }

// Subtask 5

v<ll> xs_mod;
v<pair<int, pair<ll, ll>>> tree;

ll query_xs_mod(int L, int R, int l, int r, int index) {
	if (r<L || l>R) return 1;
	if (l>=L and r<=R) return xs_mod[index];
	int mid = (l+r)/2;
	ll subl = query_xs_mod(L, R, l, mid, index*2);
	ll subr = query_xs_mod(L, R, mid+1, r, index*2+1);
	return (subl*subr)%MOD;
}

void update_xs_mod(int pos, int value, int l, int r, int index) {
	int mid = (l+r)/2;
	if (l==r){
		xs_mod[index] = value;
		return;
	}
	if (pos <= mid){
		update_xs_mod(pos, value, l, mid, index*2);
	} else {
		update_xs_mod(pos, value, mid+1, r, index*2+1);
	}
	xs_mod[index] = (xs_mod[index*2]*xs_mod[index*2+1])%MOD;
}

void update_tree(int pos, int x_value, int y_value, int l, int r, int index) {
	if (l==r) {
		x[pos] = x_value;
		y[pos] = y_value;
		tree[index] = {pos, {x_value, 1}};
		return;
	}

	int mid = (l+r)/2;
	if (pos <= mid){
		update_tree(pos, x_value, y_value, l, mid, index*2);
	} else {
		update_tree(pos, x_value, y_value, mid+1, r, index*2+1);
	}
	pair<int, pair<ll, ll>> subl = tree[index*2];
	pair<int, pair<ll, ll>> subr = tree[index*2+1];
	if (subr.fi == -1) {
		tree[index] = subl;
		return;
	}
	ll growth = min(INF, subl.se.se * subr.se.fi);
	if (y[subl.fi] > growth*y[subr.fi]) {
		tree[index] = {subl.fi, {subl.se.fi, min(INF, growth*subr.se.se)}};
	} else {
		tree[index] = {subr.fi, {min(INF, subl.se.fi*growth), subr.se.se}};
	}
}

int solve() {
	int max_i = tree[1].fi;
	ll pop = query_xs_mod(0, max_i, 0, n-1, 1);
	return (int) ((pop*y[max_i])%MOD);
}

int init(int N, int X[], int Y[]) {
	n = N;
	x = X;
	y = Y;

	xs_mod = v<ll> (4*n, 1);
	tree = v<pair<int, pair<ll,ll>>> (4*n, {-1, {1, 1}});

	for (int i=0; i<n; i++) {
		update_xs_mod(i, X[i], 0, n-1, 1);
		update_tree(i, X[i], Y[i], 0, n-1, 1);
	}
	return solve();
}

int updateX(int pos, int val) {
	update_tree(pos, val, y[pos], 0, n-1, 1);
	
	update_xs_mod(pos, val, 0, n-1, 1);
	return solve();
}

int updateY(int pos, int val) {
	update_tree(pos, x[pos], val, 0, n-1, 1);

	return solve();
}

// Shouldn't work but does :/

// v<ll> xs_mod;
// v<ll> xs_trunc;
// v<int> ys_max;

// ll query_xs_mod(int L, int R, int l, int r, int index) {
// 	if (r<L || l>R) return 1;
// 	if (l>=L and r<=R) return xs_mod[index];
// 	int mid = (l+r)/2;
// 	ll subl = query_xs_mod(L, R, l, mid, index*2);
// 	ll subr = query_xs_mod(L, R, mid+1, r, index*2+1);
// 	return (subl*subr)%MOD;
// }

// void update_xs_mod(int pos, int value, int l, int r, int index) {
// 	if (l==r) {
// 		xs_mod[index] = value;
// 		return;
// 	}
// 	int mid = (l+r)/2;
// 	if (pos <= mid){
// 		update_xs_mod(pos, value, l, mid, index*2);
// 	} else {
// 		update_xs_mod(pos, value, mid+1, r, index*2+1);
// 	}
// 	xs_mod[index] = (xs_mod[index*2]*xs_mod[index*2+1])%MOD;
// }

// ll query_xs_trunc(int L, int R, int l, int r, int index) {
// 	if (r<L || l>R) return 1;
// 	if (l>=L and r<=R) return xs_trunc[index];
// 	int mid = (l+r)/2;
// 	ll subl = query_xs_trunc(L, R, l, mid, index*2);
// 	ll subr = query_xs_trunc(L, R, mid+1, r, index*2+1);
// 	return min(INF, subl*subr);
// }

// void update_xs_trunc(int pos, int value, int l, int r, int index) {
// 	if (l==r) {
// 		xs_trunc[index] = value;
// 		return;
// 	}
// 	int mid = (l+r)/2;
// 	if (pos <= mid){
// 		update_xs_trunc(pos, value, l, mid, index*2);
// 	} else {
// 		update_xs_trunc(pos, value, mid+1, r, index*2+1);
// 	}
// 	xs_trunc[index] = min(INF, xs_trunc[index*2]*xs_trunc[index*2+1]);
// }

// int query_ys_max(int L, int R, int l, int r, int index) {
// 	if (r<L || l>R) return -1;
// 	if (l>=L and r<=R) return ys_max[index];
// 	int mid = (l+r)/2;
// 	int subl = query_ys_max(L, R, l, mid, index*2);
// 	int subr = query_ys_max(L, R, mid+1, r, index*2+1);
// 	if (subl == -1) return subr;
// 	if (subr == -1) return subl;
// 	if (y[subl] > y[subr]) return subl;
// 	return subr;
// }

// void update_ys_max(int pos, int value, int l, int r, int index) {
// 	if (l==r) {
// 		y[pos] = value;
// 		ys_max[index] = pos;
// 		return;
// 	}
// 	int mid = (l+r)/2;
// 	if (pos <= mid){
// 		update_ys_max(pos, value, l, mid, index*2);
// 	} else {
// 		update_ys_max(pos, value, mid+1, r, index*2+1);
// 	}
// 	int subl = ys_max[index*2];
// 	int subr = ys_max[index*2+1];
// 	int ans = 0;
// 	if (subl == -1) ans = subr;
// 	else if (subr == -1) ans = subl;
// 	else if (y[subl] > y[subr]) ans = subl;
// 	else ans = subr;
// 	ys_max[index] = ans;
// }

// int solve() {
// 	int max_i = query_ys_max(0, n-1, 0, n-1, 1);
// 	int cur = max_i;
// 	while (cur<n-1) {
// 		cur = query_ys_max(cur+1, n-1, 0, n-1, 1);
// 		ll pop = query_xs_trunc(max_i+1, cur, 0, n-1, 1);
// 		if (y[cur]*pop > y[max_i]) {
// 			max_i = cur;
// 		}
// 	}
// 	ll pop = query_xs_mod(0, max_i, 0, n-1, 1);
// 	return (int) ((pop*y[max_i])%MOD);
// }

// int init(int N, int X[], int Y[]) {
// 	n = N;
// 	y = Y;

// 	xs_trunc = v<ll> (4*n, 1);
// 	xs_mod = v<ll> (4*n, 1);
// 	ys_max = v<int> (4*n, 0);

// 	for (int i=0; i<n; i++) {
// 		update_xs_mod(i, X[i], 0, n-1, 1);
// 		update_xs_trunc(i, X[i], 0, n-1, 1);
// 		update_ys_max(i, Y[i], 0, n-1, 1);
// 	}
// 	return solve();
// }

// int updateX(int pos, int val) {
// 	update_xs_mod(pos, val, 0, n-1, 1);
// 	update_xs_trunc(pos, val, 0, n-1, 1);
// 	return solve();
// }

// int updateY(int pos, int val) {
// 	update_ys_max(pos, val, 0, n-1, 1);
// 	return solve();
// }
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 1 ms 284 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 0 ms 292 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 0 ms 292 KB Output is correct
20 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 1 ms 284 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 1 ms 288 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 288 KB Output is correct
19 Correct 1 ms 288 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 1 ms 556 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 432 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 340 KB Output is correct
29 Correct 1 ms 340 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
31 Correct 1 ms 340 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 250 ms 69740 KB Output is correct
2 Correct 330 ms 70752 KB Output is correct
3 Correct 288 ms 69288 KB Output is correct
4 Correct 326 ms 69368 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 284 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 284 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 288 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 292 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 0 ms 212 KB Output is correct
21 Correct 0 ms 292 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 2 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 468 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 424 KB Output is correct
28 Correct 1 ms 440 KB Output is correct
29 Correct 1 ms 340 KB Output is correct
30 Correct 1 ms 440 KB Output is correct
31 Correct 1 ms 340 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
33 Correct 238 ms 68556 KB Output is correct
34 Correct 220 ms 69644 KB Output is correct
35 Correct 256 ms 69568 KB Output is correct
36 Correct 238 ms 69436 KB Output is correct
37 Correct 207 ms 68928 KB Output is correct
38 Correct 208 ms 69584 KB Output is correct
39 Correct 219 ms 68908 KB Output is correct
40 Correct 215 ms 69560 KB Output is correct
41 Correct 233 ms 68864 KB Output is correct
42 Correct 246 ms 68908 KB Output is correct
43 Correct 233 ms 69648 KB Output is correct
44 Correct 221 ms 69580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 284 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 288 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 288 KB Output is correct
7 Correct 1 ms 284 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 288 KB Output is correct
10 Correct 0 ms 268 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 292 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 0 ms 212 KB Output is correct
21 Correct 1 ms 212 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 2 ms 432 KB Output is correct
25 Correct 1 ms 428 KB Output is correct
26 Correct 1 ms 428 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 2 ms 340 KB Output is correct
29 Correct 1 ms 340 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
31 Correct 1 ms 420 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
33 Correct 264 ms 68924 KB Output is correct
34 Correct 339 ms 69728 KB Output is correct
35 Correct 286 ms 68916 KB Output is correct
36 Correct 331 ms 68908 KB Output is correct
37 Correct 232 ms 68020 KB Output is correct
38 Correct 226 ms 69144 KB Output is correct
39 Correct 243 ms 69048 KB Output is correct
40 Correct 249 ms 69188 KB Output is correct
41 Correct 213 ms 68920 KB Output is correct
42 Correct 218 ms 69084 KB Output is correct
43 Correct 216 ms 68812 KB Output is correct
44 Correct 220 ms 69128 KB Output is correct
45 Correct 202 ms 68860 KB Output is correct
46 Correct 201 ms 68900 KB Output is correct
47 Correct 214 ms 68924 KB Output is correct
48 Correct 221 ms 68916 KB Output is correct
49 Correct 312 ms 69860 KB Output is correct
50 Correct 302 ms 69912 KB Output is correct
51 Correct 286 ms 69808 KB Output is correct
52 Correct 275 ms 69904 KB Output is correct
53 Correct 278 ms 69896 KB Output is correct
54 Correct 297 ms 69772 KB Output is correct
55 Correct 243 ms 69048 KB Output is correct
56 Correct 282 ms 69888 KB Output is correct
57 Correct 243 ms 69772 KB Output is correct
58 Correct 252 ms 69708 KB Output is correct
59 Correct 212 ms 68416 KB Output is correct