답안 #737688

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
737688 2023-05-07T14:44:46 Z veehz Crossing (JOI21_crossing) C++17
49 / 100
7000 ms 27992 KB
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef long double ld;
#define pb push_back

/* Segment Tree */
template <class S, S (*op)(S, S), S (*e)()>
struct segtree {
  /* S op(S a, S b) {} -> Combine values */
  /* S e() {} -> Initial value (0) */
  int _n;
  vector<S> d;
  segtree() : segtree(0) {}
  explicit segtree(int n) : segtree(vector<S>(n, e())) {}
  explicit segtree(vector<S> v) : _n(int(v.size())) {
    d.assign(4 * _n, e());
    if (_n) build(v);
  }
  void build(vector<S>& a, int v = 1, int tl = 0, int tr = -1) {
    if (tr == -1) tr = _n - 1;
    if (tl == tr) {
      d[v] = a[tl];
    } else {
      int tm = (tl + tr) / 2;
      build(a, v * 2, tl, tm);
      build(a, v * 2 + 1, tm + 1, tr);
      d[v] = op(d[v * 2], d[v * 2 + 1]);
    }
  }
  void set(int pos, S new_val, int tl = 0, int tr = -1, int v = 1) {
    assert(0 <= pos && pos < _n);
    if (tr == -1) tr = _n - 1;
    if (tl == tr) {
      d[v] = new_val;
    } else {
      int tm = (tl + tr) / 2;
      if (pos <= tm)
        set(pos, new_val, tl, tm, v * 2);
      else
        set(pos, new_val, tm + 1, tr, v * 2 + 1);
      d[v] = op(d[2 * v], d[2 * v + 1]);
    }
  }
  S prod(int l, int r, int tl = 0, int tr = -1, int v = 1) {
    if (tr == -1) tr = _n - 1;
    if (r < l) return e();
    if (l == tl && r == tr) return d[v];
    int tm = (tl + tr) / 2;
    return op(prod(l, min(r, tm), tl, tm, 2 * v),
              prod(max(l, tm + 1), r, tm + 1, tr, 2 * v + 1));
  }
  // new - might have bugs
  size_t prod_lower_bound(S x, int tl = 0, int tr = -1, int v = 1,
                          S acc = e()) {
    if (tr == -1) {
      if (prod(0, _n - 1) < x) return _n;
      tr = _n - 1;
    }
    if (tl == tr) return tl;
    int tm = (tl + tr) / 2;
    if (op(acc, d[2 * v]) < x)
      return prod_lower_bound(x, tm + 1, tr, 2 * v + 1, op(acc, d[2 * v]));
    else
      return prod_lower_bound(x, tl, tm, 2 * v, acc);
  }
  size_t prod_upper_bound(S x, int tl = 0, int tr = -1, int v = 1,
                          S acc = e()) {
    if (tr == -1) {
      if (prod(0, _n - 1) <= x) return _n;
      tr = _n - 1;
    }
    if (tl == tr) return tl;
    int tm = (tl + tr) / 2;
    if (op(acc, d[2 * v]) <= x)
      return prod_upper_bound(x, tm + 1, tr, 2 * v + 1, op(acc, d[2 * v]));
    else
      return prod_upper_bound(x, tl, tm, 2 * v, acc);
  }
};
/* End: Segment Tree */

template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S),
          F (*composition)(F, F), F (*id)()>
struct lazySegtree {
  int _n;
  vector<S> d;
  vector<F> lz;
  lazySegtree() : lazySegtree(0) {}
  lazySegtree(int n) : lazySegtree(vector<S>(n, e())) {}
  lazySegtree(vector<S> a)
      : _n((int)a.size()), d(4 * (int)a.size()), lz(4 * (int)a.size(), id()) {
    build(a);
  }

  void build(const vector<S>& a, int v = 1, int tl = 0, int tr = -1) {
    if (tr == -1) tr = _n - 1;
    if (tl == tr) {
      d[v] = a[tl];
    } else {
      int tm = (tl + tr) / 2;
      build(a, 2 * v, tl, tm);
      build(a, 2 * v + 1, tm + 1, tr);
      d[v] = op(d[2 * v], d[2 * v + 1]);
    }
  }

  void apply(int v, F f) {
    d[v] = mapping(f, d[v]);
    lz[v] = composition(f, lz[v]);
  }

  void push(int v) {
    apply(2 * v, lz[v]);
    apply(2 * v + 1, lz[v]);
    lz[v] = id();
  }

  void update(int v) { d[v] = op(d[2 * v], d[2 * v + 1]); }

  void set(int pos, S val, int v = 1, int tl = 0, int tr = -1) {
    if (tr == -1) tr = _n - 1;

    if (tl == tr) {
      d[v] = val;
    } else {
      int tm = (tl + tr) / 2;
      push(v);
      if (pos <= tm) {
        set(pos, val, 2 * v, tl, tm);
      } else {
        set(pos, val, 2 * v + 1, tm + 1, tr);
      }
      update(v);
    }
  }

  /** Apply to [l,r] */
  void apply(int l, int r, F f, int v = 1, int tl = 0, int tr = -1) {
    if (tr == -1) tr = _n - 1;
    if (r < l) return;

    if (l == tl && r == tr) {
      apply(v, f);
    } else {
      push(v);
      int tm = (tl + tr) / 2;
      apply(l, min(r, tm), f, 2 * v, tl, tm);
      apply(max(l, tm + 1), r, f, 2 * v + 1, tm + 1, tr);
      update(v);
    }
  }

  /** a[l] x a[l+1] x ... x a[r] */
  S prod(int l, int r, int v = 1, int tl = 0, int tr = -1) {
    if (tr == -1) tr = _n - 1;
    if (r < l) return e();

    if (l == tl && r == tr) return d[v];

    push(v);
    int tm = (tl + tr) / 2;
    return op(prod(l, min(r, tm), 2 * v, tl, tm),
              prod(max(l, tm + 1), r, 2 * v + 1, tm + 1, tr));
  }
};

// for comparing sa (= sb = sc)
typedef char sk;

sk skop(sk a, sk b) {
  if (b == ' ') return a;
  if (a == ' ') return b;
  if (a == 'X' || b == 'X' || a != b) return 'X';
  return a;
}
sk ske() { return ' '; }

inline segtree<sk, skop, ske> generateSegtree(string s) {
  vector<sk> skvec(s.begin(), s.end());
  return segtree<sk, skop, ske>(skvec);
}

vector<segtree<sk, skop, ske>> segtrees;

struct S {
  int val;
  int l, r;
};
S op(S a, S b) {
  int v = 0;
  for (int i = 0; i < (int)segtrees.size(); i++)
    if ((a.val & b.val) & (1 << i)) v |= (1 << i);
  return {v, min(a.l, b.l), max(a.r, b.r)};
}
S e() { return {(1 << ((int)segtrees.size())) - 1, INT_MAX, INT_MIN}; }

typedef char F;
// 0 = none
// 1 = J, 2 = O, 3 = I
S mapping(F f, S x) {
  if (f == ' ') return x;
  int v = 0;
  for (int i = 0; i < (int)segtrees.size(); i++) {
    if (f == segtrees[i].prod(x.l, x.r)) v |= (1 << i);
  }
  return {v, x.l, x.r};
}

F composition(F f, F g) { return f == ' ' ? g : f; }

F id() { return ' '; }

string cross(string a, string b) {
  string c;
  for (int i = 0; i < (int)a.size(); i++) {
    if (a[i] == b[i])
      c.pb(a[i]);
    else if (a[i] == 'J' && b[i] == 'O')
      c.pb('I');
    else if (a[i] == 'J' && b[i] == 'I')
      c.pb('O');
    else if (a[i] == 'O' && b[i] == 'J')
      c.pb('I');
    else if (a[i] == 'O' && b[i] == 'I')
      c.pb('J');
    else if (a[i] == 'I' && b[i] == 'J')
      c.pb('O');
    else if (a[i] == 'I' && b[i] == 'O')
      c.pb('J');
  }
  return c;
}

int main() {
  int n;
  cin >> n;

  set<string> s;
  for (int i = 0; i < 3; i++) {
    string t;
    cin >> t;
    s.insert(t);
  }

  while (true) {
    vector<string> v;
    for (auto& t : s) v.pb(t);
    bool hasNew = false;
    for (int i = 0; i < (int)v.size(); i++) {
      for (int j = i + 1; j < (int)v.size(); j++) {
        string t = cross(v[i], v[j]);
        if (s.find(t) == s.end()) {
          s.insert(t);
          hasNew = true;
        }
      }
    }
    if (!hasNew) break;
  }
  vector<string> v;
  for (auto& t : s) v.pb(t);
  for (auto& t : v) segtrees.pb(generateSegtree(t));

  int q;
  cin >> q;
  string t;
  cin >> t;
  vector<S> svec(n);
  for (int i = 0; i < n; i++) {
    int tmp = 0;
    for (int j = 0; j < (int)v.size(); j++) {
      if (v[j][i] == t[i]) tmp |= (1 << j);
    }
    svec[i] = {tmp, i, i};
  }

  lazySegtree<S, op, e, F, mapping, composition, id> seg(svec);

  cout << (seg.prod(0, n - 1).val ? "Yes" : "No") << endl;
  while (q--) {
    int l, r;
    char c;
    cin >> l >> r >> c;

    seg.apply(l - 1, r - 1, c);
    cout << (seg.prod(0, n - 1).val ? "Yes" : "No") << endl;
  }
}
# 결과 실행 시간 메모리 Grader output
1 Correct 459 ms 1156 KB Output is correct
2 Correct 470 ms 1088 KB Output is correct
3 Correct 483 ms 1120 KB Output is correct
4 Correct 420 ms 1188 KB Output is correct
5 Correct 427 ms 1228 KB Output is correct
6 Correct 414 ms 1016 KB Output is correct
7 Correct 423 ms 1192 KB Output is correct
8 Correct 436 ms 1124 KB Output is correct
9 Correct 450 ms 1100 KB Output is correct
10 Correct 437 ms 1112 KB Output is correct
11 Correct 436 ms 1092 KB Output is correct
12 Correct 430 ms 1100 KB Output is correct
13 Correct 448 ms 1124 KB Output is correct
14 Correct 432 ms 1196 KB Output is correct
15 Correct 442 ms 1072 KB Output is correct
16 Correct 429 ms 1360 KB Output is correct
17 Correct 457 ms 1200 KB Output is correct
18 Correct 495 ms 1060 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 459 ms 1156 KB Output is correct
2 Correct 470 ms 1088 KB Output is correct
3 Correct 483 ms 1120 KB Output is correct
4 Correct 420 ms 1188 KB Output is correct
5 Correct 427 ms 1228 KB Output is correct
6 Correct 414 ms 1016 KB Output is correct
7 Correct 423 ms 1192 KB Output is correct
8 Correct 436 ms 1124 KB Output is correct
9 Correct 450 ms 1100 KB Output is correct
10 Correct 437 ms 1112 KB Output is correct
11 Correct 436 ms 1092 KB Output is correct
12 Correct 430 ms 1100 KB Output is correct
13 Correct 448 ms 1124 KB Output is correct
14 Correct 432 ms 1196 KB Output is correct
15 Correct 442 ms 1072 KB Output is correct
16 Correct 429 ms 1360 KB Output is correct
17 Correct 457 ms 1200 KB Output is correct
18 Correct 495 ms 1060 KB Output is correct
19 Correct 1721 ms 17040 KB Output is correct
20 Correct 1699 ms 17044 KB Output is correct
21 Correct 825 ms 16100 KB Output is correct
22 Correct 909 ms 14480 KB Output is correct
23 Correct 655 ms 2008 KB Output is correct
24 Correct 711 ms 2004 KB Output is correct
25 Correct 884 ms 17068 KB Output is correct
26 Correct 1006 ms 17032 KB Output is correct
27 Correct 1190 ms 17032 KB Output is correct
28 Correct 1307 ms 17048 KB Output is correct
29 Correct 1087 ms 16616 KB Output is correct
30 Correct 771 ms 1972 KB Output is correct
31 Correct 1134 ms 17096 KB Output is correct
32 Correct 1108 ms 15712 KB Output is correct
33 Correct 695 ms 2072 KB Output is correct
34 Correct 1164 ms 17064 KB Output is correct
35 Correct 811 ms 12872 KB Output is correct
36 Correct 695 ms 1896 KB Output is correct
37 Correct 646 ms 1968 KB Output is correct
38 Correct 1460 ms 17064 KB Output is correct
39 Correct 637 ms 17068 KB Output is correct
40 Correct 910 ms 11488 KB Output is correct
41 Correct 1910 ms 17064 KB Output is correct
42 Correct 382 ms 17064 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 459 ms 1156 KB Output is correct
2 Correct 470 ms 1088 KB Output is correct
3 Correct 483 ms 1120 KB Output is correct
4 Correct 420 ms 1188 KB Output is correct
5 Correct 427 ms 1228 KB Output is correct
6 Correct 414 ms 1016 KB Output is correct
7 Correct 423 ms 1192 KB Output is correct
8 Correct 436 ms 1124 KB Output is correct
9 Correct 450 ms 1100 KB Output is correct
10 Correct 437 ms 1112 KB Output is correct
11 Correct 436 ms 1092 KB Output is correct
12 Correct 430 ms 1100 KB Output is correct
13 Correct 448 ms 1124 KB Output is correct
14 Correct 432 ms 1196 KB Output is correct
15 Correct 442 ms 1072 KB Output is correct
16 Correct 429 ms 1360 KB Output is correct
17 Correct 457 ms 1200 KB Output is correct
18 Correct 495 ms 1060 KB Output is correct
19 Correct 852 ms 1228 KB Output is correct
20 Correct 890 ms 1100 KB Output is correct
21 Correct 492 ms 1108 KB Output is correct
22 Correct 431 ms 1004 KB Output is correct
23 Correct 496 ms 1200 KB Output is correct
24 Correct 487 ms 1012 KB Output is correct
25 Correct 491 ms 1132 KB Output is correct
26 Correct 465 ms 1028 KB Output is correct
27 Correct 502 ms 1124 KB Output is correct
28 Correct 446 ms 1084 KB Output is correct
29 Correct 521 ms 1220 KB Output is correct
30 Correct 437 ms 1044 KB Output is correct
31 Correct 681 ms 1180 KB Output is correct
32 Correct 654 ms 1296 KB Output is correct
33 Correct 691 ms 1228 KB Output is correct
34 Correct 606 ms 1036 KB Output is correct
35 Correct 674 ms 1156 KB Output is correct
36 Correct 706 ms 1200 KB Output is correct
37 Correct 682 ms 1080 KB Output is correct
38 Correct 720 ms 1464 KB Output is correct
39 Correct 678 ms 1172 KB Output is correct
40 Correct 707 ms 1088 KB Output is correct
41 Correct 694 ms 1200 KB Output is correct
42 Correct 695 ms 1304 KB Output is correct
43 Correct 675 ms 1148 KB Output is correct
44 Correct 728 ms 1244 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 459 ms 1156 KB Output is correct
2 Correct 470 ms 1088 KB Output is correct
3 Correct 483 ms 1120 KB Output is correct
4 Correct 420 ms 1188 KB Output is correct
5 Correct 427 ms 1228 KB Output is correct
6 Correct 414 ms 1016 KB Output is correct
7 Correct 423 ms 1192 KB Output is correct
8 Correct 436 ms 1124 KB Output is correct
9 Correct 450 ms 1100 KB Output is correct
10 Correct 437 ms 1112 KB Output is correct
11 Correct 436 ms 1092 KB Output is correct
12 Correct 430 ms 1100 KB Output is correct
13 Correct 448 ms 1124 KB Output is correct
14 Correct 432 ms 1196 KB Output is correct
15 Correct 442 ms 1072 KB Output is correct
16 Correct 429 ms 1360 KB Output is correct
17 Correct 457 ms 1200 KB Output is correct
18 Correct 495 ms 1060 KB Output is correct
19 Correct 1721 ms 17040 KB Output is correct
20 Correct 1699 ms 17044 KB Output is correct
21 Correct 825 ms 16100 KB Output is correct
22 Correct 909 ms 14480 KB Output is correct
23 Correct 655 ms 2008 KB Output is correct
24 Correct 711 ms 2004 KB Output is correct
25 Correct 884 ms 17068 KB Output is correct
26 Correct 1006 ms 17032 KB Output is correct
27 Correct 1190 ms 17032 KB Output is correct
28 Correct 1307 ms 17048 KB Output is correct
29 Correct 1087 ms 16616 KB Output is correct
30 Correct 771 ms 1972 KB Output is correct
31 Correct 1134 ms 17096 KB Output is correct
32 Correct 1108 ms 15712 KB Output is correct
33 Correct 695 ms 2072 KB Output is correct
34 Correct 1164 ms 17064 KB Output is correct
35 Correct 811 ms 12872 KB Output is correct
36 Correct 695 ms 1896 KB Output is correct
37 Correct 646 ms 1968 KB Output is correct
38 Correct 1460 ms 17064 KB Output is correct
39 Correct 637 ms 17068 KB Output is correct
40 Correct 910 ms 11488 KB Output is correct
41 Correct 1910 ms 17064 KB Output is correct
42 Correct 382 ms 17064 KB Output is correct
43 Correct 852 ms 1228 KB Output is correct
44 Correct 890 ms 1100 KB Output is correct
45 Correct 492 ms 1108 KB Output is correct
46 Correct 431 ms 1004 KB Output is correct
47 Correct 496 ms 1200 KB Output is correct
48 Correct 487 ms 1012 KB Output is correct
49 Correct 491 ms 1132 KB Output is correct
50 Correct 465 ms 1028 KB Output is correct
51 Correct 502 ms 1124 KB Output is correct
52 Correct 446 ms 1084 KB Output is correct
53 Correct 521 ms 1220 KB Output is correct
54 Correct 437 ms 1044 KB Output is correct
55 Correct 681 ms 1180 KB Output is correct
56 Correct 654 ms 1296 KB Output is correct
57 Correct 691 ms 1228 KB Output is correct
58 Correct 606 ms 1036 KB Output is correct
59 Correct 674 ms 1156 KB Output is correct
60 Correct 706 ms 1200 KB Output is correct
61 Correct 682 ms 1080 KB Output is correct
62 Correct 720 ms 1464 KB Output is correct
63 Correct 678 ms 1172 KB Output is correct
64 Correct 707 ms 1088 KB Output is correct
65 Correct 694 ms 1200 KB Output is correct
66 Correct 695 ms 1304 KB Output is correct
67 Correct 675 ms 1148 KB Output is correct
68 Correct 728 ms 1244 KB Output is correct
69 Correct 6810 ms 22260 KB Output is correct
70 Execution timed out 7057 ms 27992 KB Time limit exceeded
71 Halted 0 ms 0 KB -