// Om Namah Shivaya
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
template<typename T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
typedef long long int ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
#define fastio ios_base::sync_with_stdio(false); cin.tie(NULL)
#define pb push_back
#define endl '\n'
#define sz(a) a.size()
#define setbits(x) __builtin_popcountll(x)
#define ff first
#define ss second
#define conts continue
#define ceil2(x, y) ((x + y - 1) / (y))
#define all(a) a.begin(), a.end()
#define rall(a) a.rbegin(), a.rend()
#define yes cout << "Yes" << endl
#define no cout << "No" << endl
#define rep(i, n) for(int i = 0; i < n; ++i)
#define rep1(i, n) for(int i = 1; i <= n; ++i)
#define rev(i, s, e) for(int i = s; i >= e; --i)
#define trav(i, a) for(auto &i : a)
template<typename T>
void amin(T &a, T b) {
a = min(a, b);
}
template<typename T>
void amax(T &a, T b) {
a = max(a, b);
}
#ifdef LOCAL
#include "debug.h"
#else
#define debug(x) 42
#endif
/*
refs:
https://codeforces.com/blog/entry/63991?#comment-478025
https://oj.uz/submission/682671
p(i) = pref sum until i
p(i) - p(i-n) < 0 => p(i) < p(i-n)
p(i) - p(i-m) > 0 => p(i) > p(i-m)
find a valid p and the answer can be restored from this
how to find a valid p
the only condition on p is the inequalities that we have
create an array that satisfies given inequalities:
in such cases, think toposort
add edge u-->v if p(u) < p(v)
add edges: i-->i-n and i-m-->i
find toposort, and assign p(i) values in the order every index appears in the toposort
how to find max len seq?
=> if we can make a seq of length k, then we can also make a seq of len k-1
so we can b.s on max len
*/
const int MOD = 1e9 + 7;
const int N = 1e6 + 5;
const int inf1 = int(1e9) + 5;
const ll inf2 = ll(1e18) + 5;
vector<int> adj[N];
vector<bool> vis(N), recstack(N);
vector<int> topo;
bool cyc;
void dfs(int u) {
vis[u] = 1;
recstack[u] = 1;
trav(v, adj[u]) {
if (vis[v]) {
if (recstack[v]) cyc = true;
conts;
}
dfs(v);
}
topo.pb(u);
recstack[u] = 0;
}
void solve(int test_case)
{
int n, m; cin >> n >> m;
auto ok = [&](int mid) {
rep(i, mid + 1) adj[i].clear(), vis[i] = 0;
rep1(i, mid) {
if (i - n >= 0) {
adj[i].pb(i - n);
}
if (i - m >= 0) {
adj[i - m].pb(i);
}
}
topo.clear();
cyc = false;
rep(i, mid + 1) {
if (vis[i]) conts;
dfs(i);
}
reverse(all(topo));
if (cyc) return false;
return true;
};
int l = 1, r = N - 1;
int ans = 0;
while (l <= r) {
int mid = (l + r) >> 1;
if (ok(mid)) {
ans = mid;
l = mid + 1;
}
else {
r = mid - 1;
}
}
ok(ans);
vector<int> p(ans + 5);
rep(i, sz(topo)) {
p[topo[i]] = i;
}
cout << ans << endl;
rep1(i, ans) {
int val = p[i] - p[i - 1];
cout << val << " ";
}
cout << endl;
}
int main()
{
fastio;
int t = 1;
cin >> t;
rep1(i, t) {
solve(i);
}
return 0;
}
Compilation message
sequence.cpp: In function 'void solve(int)':
sequence.cpp:30:36: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
30 | #define rep(i, n) for(int i = 0; i < n; ++i)
| ^
sequence.cpp:158:5: note: in expansion of macro 'rep'
158 | rep(i, sz(topo)) {
| ^~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
431 ms |
65356 KB |
Ok |
2 |
Correct |
476 ms |
65344 KB |
Ok |
3 |
Correct |
583 ms |
43516 KB |
Ok |
4 |
Correct |
514 ms |
45088 KB |
Ok |
5 |
Correct |
642 ms |
43564 KB |
Ok |
6 |
Correct |
432 ms |
47580 KB |
Ok |
7 |
Correct |
492 ms |
42916 KB |
Ok |
8 |
Correct |
460 ms |
47680 KB |
Ok |
9 |
Correct |
511 ms |
43344 KB |
Ok |
10 |
Correct |
474 ms |
53500 KB |
Ok |
11 |
Correct |
524 ms |
42952 KB |
Ok |
12 |
Correct |
483 ms |
42428 KB |
Ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
481 ms |
65136 KB |
Ok |
2 |
Correct |
440 ms |
65208 KB |
Ok |
3 |
Correct |
510 ms |
65208 KB |
Ok |
4 |
Correct |
495 ms |
65208 KB |
Ok |
5 |
Correct |
494 ms |
65164 KB |
Ok |
6 |
Correct |
411 ms |
65344 KB |
Ok |
7 |
Correct |
474 ms |
65500 KB |
Ok |
8 |
Correct |
451 ms |
65512 KB |
Ok |
9 |
Correct |
459 ms |
65860 KB |
Ok |
10 |
Correct |
462 ms |
65508 KB |
Ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
177 ms |
65260 KB |
Ok |
2 |
Correct |
439 ms |
65312 KB |
Ok |
3 |
Correct |
445 ms |
65172 KB |
Ok |
4 |
Correct |
458 ms |
65256 KB |
Ok |
5 |
Correct |
471 ms |
65340 KB |
Ok |
6 |
Correct |
454 ms |
65212 KB |
Ok |
7 |
Correct |
449 ms |
65348 KB |
Ok |
8 |
Correct |
450 ms |
65288 KB |
Ok |
9 |
Correct |
481 ms |
65208 KB |
Ok |
10 |
Correct |
496 ms |
65208 KB |
Ok |
11 |
Correct |
440 ms |
65136 KB |
Ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
437 ms |
65328 KB |
Ok |
2 |
Correct |
475 ms |
65344 KB |
Ok |
3 |
Correct |
543 ms |
65256 KB |
Ok |
4 |
Correct |
521 ms |
65300 KB |
Ok |
5 |
Correct |
549 ms |
65324 KB |
Ok |
6 |
Correct |
975 ms |
69400 KB |
Ok |
7 |
Correct |
759 ms |
67908 KB |
Ok |
8 |
Correct |
1262 ms |
70580 KB |
Ok |
9 |
Correct |
992 ms |
71248 KB |
Ok |
10 |
Correct |
731 ms |
67956 KB |
Ok |
11 |
Correct |
1028 ms |
70492 KB |
Ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
431 ms |
65356 KB |
Ok |
2 |
Correct |
476 ms |
65344 KB |
Ok |
3 |
Correct |
583 ms |
43516 KB |
Ok |
4 |
Correct |
514 ms |
45088 KB |
Ok |
5 |
Correct |
642 ms |
43564 KB |
Ok |
6 |
Correct |
432 ms |
47580 KB |
Ok |
7 |
Correct |
492 ms |
42916 KB |
Ok |
8 |
Correct |
460 ms |
47680 KB |
Ok |
9 |
Correct |
511 ms |
43344 KB |
Ok |
10 |
Correct |
474 ms |
53500 KB |
Ok |
11 |
Correct |
524 ms |
42952 KB |
Ok |
12 |
Correct |
483 ms |
42428 KB |
Ok |
13 |
Correct |
177 ms |
65260 KB |
Ok |
14 |
Correct |
439 ms |
65312 KB |
Ok |
15 |
Correct |
445 ms |
65172 KB |
Ok |
16 |
Correct |
458 ms |
65256 KB |
Ok |
17 |
Correct |
471 ms |
65340 KB |
Ok |
18 |
Correct |
454 ms |
65212 KB |
Ok |
19 |
Correct |
449 ms |
65348 KB |
Ok |
20 |
Correct |
450 ms |
65288 KB |
Ok |
21 |
Correct |
481 ms |
65208 KB |
Ok |
22 |
Correct |
496 ms |
65208 KB |
Ok |
23 |
Correct |
440 ms |
65136 KB |
Ok |
24 |
Correct |
655 ms |
41972 KB |
Ok |
25 |
Correct |
727 ms |
42244 KB |
Ok |
26 |
Correct |
665 ms |
43476 KB |
Ok |
27 |
Correct |
830 ms |
43628 KB |
Ok |
28 |
Correct |
673 ms |
42252 KB |
Ok |
29 |
Correct |
653 ms |
49796 KB |
Ok |
30 |
Correct |
648 ms |
42952 KB |
Ok |
31 |
Correct |
708 ms |
42256 KB |
Ok |
32 |
Correct |
694 ms |
42096 KB |
Ok |
33 |
Correct |
736 ms |
43236 KB |
Ok |
34 |
Correct |
1255 ms |
65340 KB |
Ok |
35 |
Correct |
716 ms |
65520 KB |
Ok |
36 |
Correct |
1108 ms |
65380 KB |
Ok |
37 |
Correct |
813 ms |
65384 KB |
Ok |
38 |
Correct |
817 ms |
65312 KB |
Ok |
39 |
Correct |
1174 ms |
65488 KB |
Ok |
40 |
Correct |
913 ms |
65396 KB |
Ok |
41 |
Correct |
764 ms |
65368 KB |
Ok |
42 |
Correct |
1235 ms |
65392 KB |
Ok |
43 |
Correct |
949 ms |
65488 KB |
Ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
431 ms |
65356 KB |
Ok |
2 |
Correct |
476 ms |
65344 KB |
Ok |
3 |
Correct |
583 ms |
43516 KB |
Ok |
4 |
Correct |
514 ms |
45088 KB |
Ok |
5 |
Correct |
642 ms |
43564 KB |
Ok |
6 |
Correct |
432 ms |
47580 KB |
Ok |
7 |
Correct |
492 ms |
42916 KB |
Ok |
8 |
Correct |
460 ms |
47680 KB |
Ok |
9 |
Correct |
511 ms |
43344 KB |
Ok |
10 |
Correct |
474 ms |
53500 KB |
Ok |
11 |
Correct |
524 ms |
42952 KB |
Ok |
12 |
Correct |
483 ms |
42428 KB |
Ok |
13 |
Correct |
481 ms |
65136 KB |
Ok |
14 |
Correct |
440 ms |
65208 KB |
Ok |
15 |
Correct |
510 ms |
65208 KB |
Ok |
16 |
Correct |
495 ms |
65208 KB |
Ok |
17 |
Correct |
494 ms |
65164 KB |
Ok |
18 |
Correct |
411 ms |
65344 KB |
Ok |
19 |
Correct |
474 ms |
65500 KB |
Ok |
20 |
Correct |
451 ms |
65512 KB |
Ok |
21 |
Correct |
459 ms |
65860 KB |
Ok |
22 |
Correct |
462 ms |
65508 KB |
Ok |
23 |
Correct |
177 ms |
65260 KB |
Ok |
24 |
Correct |
439 ms |
65312 KB |
Ok |
25 |
Correct |
445 ms |
65172 KB |
Ok |
26 |
Correct |
458 ms |
65256 KB |
Ok |
27 |
Correct |
471 ms |
65340 KB |
Ok |
28 |
Correct |
454 ms |
65212 KB |
Ok |
29 |
Correct |
449 ms |
65348 KB |
Ok |
30 |
Correct |
450 ms |
65288 KB |
Ok |
31 |
Correct |
481 ms |
65208 KB |
Ok |
32 |
Correct |
496 ms |
65208 KB |
Ok |
33 |
Correct |
440 ms |
65136 KB |
Ok |
34 |
Correct |
655 ms |
41972 KB |
Ok |
35 |
Correct |
727 ms |
42244 KB |
Ok |
36 |
Correct |
665 ms |
43476 KB |
Ok |
37 |
Correct |
830 ms |
43628 KB |
Ok |
38 |
Correct |
673 ms |
42252 KB |
Ok |
39 |
Correct |
653 ms |
49796 KB |
Ok |
40 |
Correct |
648 ms |
42952 KB |
Ok |
41 |
Correct |
708 ms |
42256 KB |
Ok |
42 |
Correct |
694 ms |
42096 KB |
Ok |
43 |
Correct |
736 ms |
43236 KB |
Ok |
44 |
Correct |
1255 ms |
65340 KB |
Ok |
45 |
Correct |
716 ms |
65520 KB |
Ok |
46 |
Correct |
1108 ms |
65380 KB |
Ok |
47 |
Correct |
813 ms |
65384 KB |
Ok |
48 |
Correct |
817 ms |
65312 KB |
Ok |
49 |
Correct |
1174 ms |
65488 KB |
Ok |
50 |
Correct |
913 ms |
65396 KB |
Ok |
51 |
Correct |
764 ms |
65368 KB |
Ok |
52 |
Correct |
1235 ms |
65392 KB |
Ok |
53 |
Correct |
949 ms |
65488 KB |
Ok |
54 |
Correct |
755 ms |
44140 KB |
Ok |
55 |
Correct |
874 ms |
44572 KB |
Ok |
56 |
Correct |
961 ms |
44408 KB |
Ok |
57 |
Correct |
675 ms |
43688 KB |
Ok |
58 |
Correct |
824 ms |
44524 KB |
Ok |
59 |
Correct |
806 ms |
44356 KB |
Ok |
60 |
Correct |
719 ms |
43896 KB |
Ok |
61 |
Correct |
689 ms |
43928 KB |
Ok |
62 |
Correct |
947 ms |
44764 KB |
Ok |
63 |
Correct |
757 ms |
44068 KB |
Ok |
64 |
Correct |
859 ms |
44592 KB |
Ok |
65 |
Correct |
792 ms |
44372 KB |
Ok |
66 |
Correct |
727 ms |
44088 KB |
Ok |
67 |
Correct |
673 ms |
43900 KB |
Ok |
68 |
Correct |
813 ms |
44476 KB |
Ok |
69 |
Execution timed out |
2070 ms |
69868 KB |
Time limit exceeded |
70 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
431 ms |
65356 KB |
Ok |
2 |
Correct |
476 ms |
65344 KB |
Ok |
3 |
Correct |
583 ms |
43516 KB |
Ok |
4 |
Correct |
514 ms |
45088 KB |
Ok |
5 |
Correct |
642 ms |
43564 KB |
Ok |
6 |
Correct |
432 ms |
47580 KB |
Ok |
7 |
Correct |
492 ms |
42916 KB |
Ok |
8 |
Correct |
460 ms |
47680 KB |
Ok |
9 |
Correct |
511 ms |
43344 KB |
Ok |
10 |
Correct |
474 ms |
53500 KB |
Ok |
11 |
Correct |
524 ms |
42952 KB |
Ok |
12 |
Correct |
483 ms |
42428 KB |
Ok |
13 |
Correct |
481 ms |
65136 KB |
Ok |
14 |
Correct |
440 ms |
65208 KB |
Ok |
15 |
Correct |
510 ms |
65208 KB |
Ok |
16 |
Correct |
495 ms |
65208 KB |
Ok |
17 |
Correct |
494 ms |
65164 KB |
Ok |
18 |
Correct |
411 ms |
65344 KB |
Ok |
19 |
Correct |
474 ms |
65500 KB |
Ok |
20 |
Correct |
451 ms |
65512 KB |
Ok |
21 |
Correct |
459 ms |
65860 KB |
Ok |
22 |
Correct |
462 ms |
65508 KB |
Ok |
23 |
Correct |
177 ms |
65260 KB |
Ok |
24 |
Correct |
439 ms |
65312 KB |
Ok |
25 |
Correct |
445 ms |
65172 KB |
Ok |
26 |
Correct |
458 ms |
65256 KB |
Ok |
27 |
Correct |
471 ms |
65340 KB |
Ok |
28 |
Correct |
454 ms |
65212 KB |
Ok |
29 |
Correct |
449 ms |
65348 KB |
Ok |
30 |
Correct |
450 ms |
65288 KB |
Ok |
31 |
Correct |
481 ms |
65208 KB |
Ok |
32 |
Correct |
496 ms |
65208 KB |
Ok |
33 |
Correct |
440 ms |
65136 KB |
Ok |
34 |
Correct |
437 ms |
65328 KB |
Ok |
35 |
Correct |
475 ms |
65344 KB |
Ok |
36 |
Correct |
543 ms |
65256 KB |
Ok |
37 |
Correct |
521 ms |
65300 KB |
Ok |
38 |
Correct |
549 ms |
65324 KB |
Ok |
39 |
Correct |
975 ms |
69400 KB |
Ok |
40 |
Correct |
759 ms |
67908 KB |
Ok |
41 |
Correct |
1262 ms |
70580 KB |
Ok |
42 |
Correct |
992 ms |
71248 KB |
Ok |
43 |
Correct |
731 ms |
67956 KB |
Ok |
44 |
Correct |
1028 ms |
70492 KB |
Ok |
45 |
Correct |
655 ms |
41972 KB |
Ok |
46 |
Correct |
727 ms |
42244 KB |
Ok |
47 |
Correct |
665 ms |
43476 KB |
Ok |
48 |
Correct |
830 ms |
43628 KB |
Ok |
49 |
Correct |
673 ms |
42252 KB |
Ok |
50 |
Correct |
653 ms |
49796 KB |
Ok |
51 |
Correct |
648 ms |
42952 KB |
Ok |
52 |
Correct |
708 ms |
42256 KB |
Ok |
53 |
Correct |
694 ms |
42096 KB |
Ok |
54 |
Correct |
736 ms |
43236 KB |
Ok |
55 |
Correct |
1255 ms |
65340 KB |
Ok |
56 |
Correct |
716 ms |
65520 KB |
Ok |
57 |
Correct |
1108 ms |
65380 KB |
Ok |
58 |
Correct |
813 ms |
65384 KB |
Ok |
59 |
Correct |
817 ms |
65312 KB |
Ok |
60 |
Correct |
1174 ms |
65488 KB |
Ok |
61 |
Correct |
913 ms |
65396 KB |
Ok |
62 |
Correct |
764 ms |
65368 KB |
Ok |
63 |
Correct |
1235 ms |
65392 KB |
Ok |
64 |
Correct |
949 ms |
65488 KB |
Ok |
65 |
Correct |
755 ms |
44140 KB |
Ok |
66 |
Correct |
874 ms |
44572 KB |
Ok |
67 |
Correct |
961 ms |
44408 KB |
Ok |
68 |
Correct |
675 ms |
43688 KB |
Ok |
69 |
Correct |
824 ms |
44524 KB |
Ok |
70 |
Correct |
806 ms |
44356 KB |
Ok |
71 |
Correct |
719 ms |
43896 KB |
Ok |
72 |
Correct |
689 ms |
43928 KB |
Ok |
73 |
Correct |
947 ms |
44764 KB |
Ok |
74 |
Correct |
757 ms |
44068 KB |
Ok |
75 |
Correct |
859 ms |
44592 KB |
Ok |
76 |
Correct |
792 ms |
44372 KB |
Ok |
77 |
Correct |
727 ms |
44088 KB |
Ok |
78 |
Correct |
673 ms |
43900 KB |
Ok |
79 |
Correct |
813 ms |
44476 KB |
Ok |
80 |
Execution timed out |
2070 ms |
69868 KB |
Time limit exceeded |
81 |
Halted |
0 ms |
0 KB |
- |