#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define fi first
#define se second
#define mp make_pair
#define pb push_back
typedef long long ll;
typedef pair<int,int> ii;
typedef vector<int> vi;
typedef long double ld;
typedef tree<ii, null_type, less<ii>, rb_tree_tag, tree_order_statistics_node_update> pbds;
const int MOD=1e9+7;
int add(int a, int b)
{
a+=b;
while(a>=MOD) a-=MOD;
return a;
}
int mult(int a, int b)
{
return (a*1LL*b)%MOD;
}
vector<int> getZeckendorf(vi a)
{
sort(a.rbegin(),a.rend());
while(1)
{
vi nw; bool reset=0;
/*
for(int x:a)
{
cerr<<x<<' ';
}
cerr<<'\n';
*/
for(int i=0;i<a.size();i++)
{
if(reset)
{
nw.pb(a[i]); continue;
}
if(i+1==int(a.size()))
{
nw.pb(a[i]); break;
}
if(a[i]==a[i+1])
{
if(a[i]==1)
{
nw.pb(2); i++; reset=1; continue;
}
else if(a[i]==2)
{
nw.pb(1); nw.pb(1); reset=1; continue;
}
else
{
nw.pb(a[i]+1); nw.pb(a[i]-2); i++; reset=1; continue;
}
}
else if(a[i]-a[i+1]==1)
{
nw.pb(a[i]+1); i++; reset=1;
}
else
{
nw.pb(a[i]);
}
}
sort(nw.rbegin(),nw.rend());
a=nw;
if(!reset) break;
}
return a;
}
int solve(vi vec) //solve given zeckendorf monkaS
{
reverse(vec.begin(),vec.end());
vector<int> dp[2];
dp[0].assign(int(vec.size()),0);
dp[1].assign(int(vec.size()),0);
dp[0][0] = (vec[0]-1)/2;
dp[1][0] = add(dp[0][0], 1);
int n=vec.size();
for(int i=1;i<n;i++)
{
int x=vec[i-1]; int y=vec[i];
if((y-x)&1)
{
dp[1][i] = mult(dp[1][i-1], (y-x+1)/2);
dp[0][i] = mult(dp[1][i-1], (y-x-1)/2);
}
else
{
dp[0][i] = add(mult((y-x)/2 - 1, dp[1][i-1]), dp[0][i-1]);
dp[1][i] = add(mult((y-x)/2, dp[1][i-1]), dp[0][i-1]);
}
}
return dp[1][n-1];
}
struct matrix
{
int a[2][2];
matrix()
{
memset(a,0,sizeof(a));
}
};
matrix unit;
matrix operator*(matrix a, matrix b)
{
matrix c;
for(int i=0;i<2;i++)
{
for(int j=0;j<2;j++)
{
c.a[i][j]=0;
for(int k=0;k<2;k++)
{
c.a[i][j]=add(c.a[i][j],mult(a.a[i][k], b.a[k][j]));
}
}
}
return c;
}
matrix init(int d)
{
matrix c;
c.a[0][0] = 1; c.a[0][1] = d-1;
c.a[1][0] = 1; c.a[1][1] = d;
return c;
}
matrix st[422222];
void build(int id, int l, int r)
{
if(r-l<2)
{
st[id]=unit; return ;
}
int mid=(l+r)>>1;
build(id*2,l,mid); build(id*2+1,mid,r);
st[id]=st[id*2+1]*st[id*2];
}
void update(int id, int l, int r, int pos, matrix v)
{
if(pos<l||pos>=r) return ;
if(r-l<2)
{
st[id]=v; return ;
}
int mid=(l+r)>>1;
update(id*2,l,mid,pos,v); update(id*2+1,mid,r,pos,v);
st[id]=st[id*2+1]*st[id*2];
}
int a[111111];
int main()
{
ios_base::sync_with_stdio(0); cin.tie(0);
srand(time(NULL));
int n; cin>>n;
//n=15; cout<<n<<endl;
for(int i=0;i<n;i++)
{
cin>>a[i];
//a[i]=rand()%15+1;
//cout<<a[i]<<' ';
}
//cout<<endl;
unit=matrix();
unit.a[0][0]=unit.a[1][1]=1;
if(n<=100)
{
vi vec;
for(int i=0;i<n;i++)
{
vec.pb(a[i]);
vi nw = getZeckendorf(vec);
cout<<solve(nw)<<'\n';
}
}
else
{
vi coord;
for(int i=0;i<n;i++)
{
coord.pb(a[i]);
}
sort(coord.begin(),coord.end());
set<int> S;
build(1,0,n);
for(int i=0;i<n;i++)
{
S.insert(a[i]); int pos = lower_bound(coord.begin(),coord.end(),a[i])-coord.begin();
auto it = S.lower_bound(a[i]);
if(it==S.begin())
{
it++;
if(it==S.end())
{
update(1,0,n,pos,init(a[i]/2));
}
else
{
int idnext = lower_bound(coord.begin(),coord.end(),(*it))-coord.begin();
update(1,0,n,pos,init(a[i]/2));
update(1,0,n,idnext,init(((*it)-a[i])/2));
}
}
else
{
if(next(it)==S.end())
{
update(1,0,n,pos,init((a[i]-(*prev(it)))/2));
}
else
{
update(1,0,n,pos,init((a[i]-(*prev(it)))/2));
it++;
int idnext = lower_bound(coord.begin(),coord.end(),(*it))-coord.begin();
update(1,0,n,idnext,init(((*it)-a[i])/2));
}
}
cout<<st[1].a[1][1]<<'\n';
}
}
}
Compilation message
fib.cpp: In function 'std::vector<int> getZeckendorf(vi)':
fib.cpp:46:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
for(int i=0;i<a.size();i++)
~^~~~~~~~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
6928 KB |
Output is correct |
2 |
Correct |
8 ms |
7144 KB |
Output is correct |
3 |
Correct |
8 ms |
7144 KB |
Output is correct |
4 |
Correct |
8 ms |
7144 KB |
Output is correct |
5 |
Correct |
7 ms |
7176 KB |
Output is correct |
6 |
Correct |
8 ms |
7176 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
6928 KB |
Output is correct |
2 |
Correct |
8 ms |
7144 KB |
Output is correct |
3 |
Correct |
8 ms |
7144 KB |
Output is correct |
4 |
Correct |
8 ms |
7144 KB |
Output is correct |
5 |
Correct |
7 ms |
7176 KB |
Output is correct |
6 |
Correct |
8 ms |
7176 KB |
Output is correct |
7 |
Correct |
13 ms |
7224 KB |
Output is correct |
8 |
Correct |
13 ms |
7224 KB |
Output is correct |
9 |
Correct |
19 ms |
7224 KB |
Output is correct |
10 |
Correct |
13 ms |
7252 KB |
Output is correct |
11 |
Correct |
14 ms |
7252 KB |
Output is correct |
12 |
Correct |
17 ms |
7252 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
7252 KB |
Output is correct |
2 |
Correct |
9 ms |
7252 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
6928 KB |
Output is correct |
2 |
Correct |
8 ms |
7144 KB |
Output is correct |
3 |
Correct |
8 ms |
7144 KB |
Output is correct |
4 |
Correct |
8 ms |
7144 KB |
Output is correct |
5 |
Correct |
7 ms |
7176 KB |
Output is correct |
6 |
Correct |
8 ms |
7176 KB |
Output is correct |
7 |
Correct |
13 ms |
7224 KB |
Output is correct |
8 |
Correct |
13 ms |
7224 KB |
Output is correct |
9 |
Correct |
19 ms |
7224 KB |
Output is correct |
10 |
Correct |
13 ms |
7252 KB |
Output is correct |
11 |
Correct |
14 ms |
7252 KB |
Output is correct |
12 |
Correct |
17 ms |
7252 KB |
Output is correct |
13 |
Correct |
8 ms |
7252 KB |
Output is correct |
14 |
Correct |
9 ms |
7252 KB |
Output is correct |
15 |
Correct |
8 ms |
7252 KB |
Output is correct |
16 |
Correct |
17 ms |
7252 KB |
Output is correct |
17 |
Correct |
7 ms |
7252 KB |
Output is correct |
18 |
Correct |
7 ms |
7252 KB |
Output is correct |
19 |
Correct |
14 ms |
7252 KB |
Output is correct |
20 |
Correct |
14 ms |
7252 KB |
Output is correct |
21 |
Correct |
10 ms |
7252 KB |
Output is correct |
22 |
Correct |
10 ms |
7252 KB |
Output is correct |
23 |
Correct |
12 ms |
7252 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
7252 KB |
Output is correct |
2 |
Correct |
472 ms |
13620 KB |
Output is correct |
3 |
Correct |
467 ms |
13704 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
8 ms |
6928 KB |
Output is correct |
2 |
Correct |
8 ms |
7144 KB |
Output is correct |
3 |
Correct |
8 ms |
7144 KB |
Output is correct |
4 |
Correct |
8 ms |
7144 KB |
Output is correct |
5 |
Correct |
7 ms |
7176 KB |
Output is correct |
6 |
Correct |
8 ms |
7176 KB |
Output is correct |
7 |
Correct |
13 ms |
7224 KB |
Output is correct |
8 |
Correct |
13 ms |
7224 KB |
Output is correct |
9 |
Correct |
19 ms |
7224 KB |
Output is correct |
10 |
Correct |
13 ms |
7252 KB |
Output is correct |
11 |
Correct |
14 ms |
7252 KB |
Output is correct |
12 |
Correct |
17 ms |
7252 KB |
Output is correct |
13 |
Correct |
8 ms |
7252 KB |
Output is correct |
14 |
Correct |
9 ms |
7252 KB |
Output is correct |
15 |
Correct |
8 ms |
7252 KB |
Output is correct |
16 |
Correct |
17 ms |
7252 KB |
Output is correct |
17 |
Correct |
7 ms |
7252 KB |
Output is correct |
18 |
Correct |
7 ms |
7252 KB |
Output is correct |
19 |
Correct |
14 ms |
7252 KB |
Output is correct |
20 |
Correct |
14 ms |
7252 KB |
Output is correct |
21 |
Correct |
10 ms |
7252 KB |
Output is correct |
22 |
Correct |
10 ms |
7252 KB |
Output is correct |
23 |
Correct |
12 ms |
7252 KB |
Output is correct |
24 |
Correct |
8 ms |
7252 KB |
Output is correct |
25 |
Correct |
472 ms |
13620 KB |
Output is correct |
26 |
Correct |
467 ms |
13704 KB |
Output is correct |
27 |
Incorrect |
93 ms |
13704 KB |
Output isn't correct |
28 |
Halted |
0 ms |
0 KB |
- |