답안 #732003

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
732003 2023-04-28T08:26:03 Z Josia 무지개나라 (APIO17_rainbow) C++17
62 / 100
3000 ms 701308 KB
#include "rainbow.h"

#include <bits/stdc++.h>

using namespace std;


// #define int int64_t



int convert(int x) {
    return x*2+1;
}




struct seg {
    struct node {
        int val=0, l=-1, r=-1;
    };


    vector<node> tree;

    seg() {
        tree.assign(2, node());
    }

    int update(int v, int rl, int rr, int pos, int x) {
        int newV = tree.size();
        tree.push_back(tree[v]);

        if (rl == rr) {
            assert(pos == rl);
            tree[newV].val += x;
            return newV;
        }

        if (tree[newV].l == -1) {tree[newV].l = tree.size(); tree.push_back(node());}
        if (tree[newV].r == -1) {tree[newV].r = tree.size(); tree.push_back(node());}
        int rm = (rl + rr)/2;
        if (pos <= rm) {
            tree[newV].l = update(tree[newV].l, rl, rm, pos, x);
        }
        else {
            tree[newV].r = update(tree[newV].r, rm+1, rr, pos, x);
        }

        tree[newV].val = tree[tree[newV].l].val + tree[tree[newV].r].val;

        return newV;
    }

    int query(int v, int rl, int rr, int ql, int qr) {
        if (ql > qr) return 0;
        if (ql == rl && qr == rr) {
            return tree[v].val;
        }

        int rm = (rl + rr)/2;
        if (tree[v].l == -1) {tree[v].l = tree.size(); tree.push_back(node());}
        if (tree[v].r == -1) {tree[v].r = tree.size(); tree.push_back(node());}
        return query(tree[v].r, rm+1, rr, max(ql, rm+1), qr) + query(tree[v].l, rl, rm, ql, min(qr, rm));
    }
};


seg squares = seg();
seg edgesFrst = seg();
seg edgesScnd = seg();
seg nodes = seg();

vector<int> queryTimeNodes;
vector<int> queryTimeSquares;
vector<int> queryTimeEdgesFrst;
vector<int> queryTimeEdgesScnd;


vector<pair<int, int>> eightConnected = {
    {1, 1},
    {-1, -1},
    {1, -1},
    {-1, 1},
    {0, 1},
    {0, -1},
    {1, 0},
    {-1, 0},
};



int R, C;

void init(signed r, signed c, signed sr, signed sc, signed M, char *S) {
    squares = seg();
    edgesFrst = seg();
    edgesScnd = seg();
    nodes = seg();


    R = r+4; C = c+4;
    R = R*2 + 1;
    C = C*2 + 1;
    map<char, pair<int, int>> dir;
    dir['N'] = {-2, 0};
    dir['S'] = {2, 0};
    dir['W'] = {0, -2};
    dir['E'] = {0, 2};


    pair<int, int> pos = {convert(sr+1), convert(sc+1)};                                                                                  // We can use 2-indexed because we added 1 margin!

    set<pair<int, int>> rivers;
    rivers.insert(pos);
    for (auto j: eightConnected) {
        rivers.insert({pos.first + j.first, pos.second + j.second});
    }

    for (int i = 0; i<M; i++) {
        pos.first += dir[S[i]].first;
        pos.second += dir[S[i]].second;

        rivers.insert(pos);

        for (auto j: eightConnected) {
            rivers.insert({pos.first + j.first, pos.second + j.second});
        }
    }


    set<pair<int, int>> eFrst, eScnd, sqrs;

    for (auto i: rivers) {
        bool scnd = rivers.count({i.first, i.second+1});
        bool frst = rivers.count({i.first+1, i.second});
        bool frstscnd = rivers.count({i.first+1, i.second+1});

        if (scnd) eScnd.insert(i);
        if (frst) eFrst.insert(i);
        if (scnd&&frst&&frstscnd) sqrs.insert(i);
    }

    queryTimeNodes.clear();
    {
        int ROW = 0;
        int root = 1;
        for (auto i: rivers) {
            while (i.first > ROW) {
                ROW++;
                queryTimeNodes.push_back(root);
            }

            root = nodes.update(root, 0, C-1, i.second, 1);
        }
        while ((int)queryTimeNodes.size() < R) queryTimeNodes.push_back(root);
    }

    queryTimeSquares.clear();
    {
        int ROW = 0;
        int root = 1;
        for (auto i: sqrs) {
            while (i.first > ROW) {
                ROW++;
                queryTimeSquares.push_back(root);
            }

            root = squares.update(root, 0, C-1, i.second, 1);
        }
        while ((int)queryTimeSquares.size() < R) queryTimeSquares.push_back(root);
    }

    queryTimeEdgesFrst.clear();
    {
        int ROW = 0;
        int root = 1;
        for (auto i: eFrst) {
            while (i.first > ROW) {
                ROW++;
                queryTimeEdgesFrst.push_back(root);
            }

            root = edgesFrst.update(root, 0, C-1, i.second, 1);
        }
        while ((int)queryTimeEdgesFrst.size() < R) queryTimeEdgesFrst.push_back(root);
    }

    queryTimeEdgesScnd.clear();
    {
        int ROW = 0;
        int root = 1;
        for (auto i: eScnd) {
            while (i.first > ROW) {
                ROW++;
                queryTimeEdgesScnd.push_back(root);
            }

            root = edgesScnd.update(root, 0, C-1, i.second, 1);
        }
        while ((int)queryTimeEdgesScnd.size() < R) queryTimeEdgesScnd.push_back(root);
    }


}

signed colour(signed ar, signed ac, signed br, signed bc) {

    ar++; ac++; br++; bc++;                                                                                        // We can use 2-indexed because we added 1 margin!

    ar = convert(ar);
    ac = convert(ac);
    br = convert(br);
    bc = convert(bc);


    int countNodes=0, countEdges=0, countSquares=0;
    bool connected=0;


    countNodes += nodes.query(queryTimeNodes[br], 0, C-1, ac, bc);
    countNodes -= nodes.query(queryTimeNodes[ar-1], 0, C-1, ac, bc);

    countEdges += edgesFrst.query(queryTimeEdgesFrst[br-1], 0, C-1, ac, bc);
    countEdges -= edgesFrst.query(queryTimeEdgesFrst[ar-1], 0, C-1, ac, bc);
    countEdges += edgesScnd.query(queryTimeEdgesScnd[br], 0, C-1, ac, bc-1);
    countEdges -= edgesScnd.query(queryTimeEdgesScnd[ar-1], 0, C-1, ac, bc-1);

    countSquares += squares.query(queryTimeSquares[br-1], 0, C-1, ac, bc-1);
    countSquares -= squares.query(queryTimeSquares[ar-1], 0, C-1, ac, bc-1);


    if (countNodes == 0) connected = 1;
    connected=connected||nodes.query(queryTimeNodes[ar], 0, C-1, ac, bc)-nodes.query(queryTimeNodes[ar-1], 0, C-1, ac, bc);
    connected=connected||nodes.query(queryTimeNodes[br], 0, C-1, ac, bc)-nodes.query(queryTimeNodes[br-1], 0, C-1, ac, bc);
    connected=connected||nodes.query(queryTimeNodes[br], 0, C-1, ac, ac)-nodes.query(queryTimeNodes[ar-1], 0, C-1, ac, ac);
    connected=connected||nodes.query(queryTimeNodes[br], 0, C-1, bc, bc)-nodes.query(queryTimeNodes[ar-1], 0, C-1, bc, bc);


    // cerr << "edges:" << countEdges << " " << "nodes:" << countNodes << " " << "squares:" << countSquares << " " <<  "connected:" << connected << "\n";

    if (!connected) {
        return countEdges-countNodes+2-countSquares;
    }


    int lenR = br-ar+1, lenC = bc-ac+1;

    countNodes+=2*(lenR+lenC)+4;

    // countNodes-=nodes.query(queryTimeNodes[ar-1], 0, C-1, ac, bc)-nodes.query(queryTimeNodes[ar-2], 0, C-1, ac, bc);
    // countNodes-=nodes.query(queryTimeNodes[br+1], 0, C-1, ac, bc)-nodes.query(queryTimeNodes[br], 0, C-1, ac, bc);
    // countNodes-=nodes.query(queryTimeNodes[br], 0, C-1, ac-1, ac-1)-nodes.query(queryTimeNodes[ar-1], 0, C-1, ac-1, ac-1);
    // countNodes-=nodes.query(queryTimeNodes[br], 0, C-1, bc+1, bc+1)-nodes.query(queryTimeNodes[ar-1], 0, C-1, bc+1, bc+1);

    countEdges+=nodes.query(queryTimeNodes[ar], 0, C-1, ac, bc)-nodes.query(queryTimeNodes[ar-1], 0, C-1, ac, bc);
    countEdges+=nodes.query(queryTimeNodes[br], 0, C-1, ac, bc)-nodes.query(queryTimeNodes[br-1], 0, C-1, ac, bc);
    countEdges+=nodes.query(queryTimeNodes[br], 0, C-1, ac, ac)-nodes.query(queryTimeNodes[ar-1], 0, C-1, ac, ac);
    countEdges+=nodes.query(queryTimeNodes[br], 0, C-1, bc, bc)-nodes.query(queryTimeNodes[ar-1], 0, C-1, bc, bc);
    
    countEdges+=2*(lenR-1+lenC-1)+8;

    // countEdges-=edgesScnd.query(queryTimeEdgesScnd[ar-1], 0, C-1, ac, bc-1)-edgesScnd.query(queryTimeEdgesScnd[ar-2], 0, C-1, ac, bc-1);
    // countEdges-=edgesScnd.query(queryTimeEdgesScnd[br+1], 0, C-1, ac, bc-1)-edgesScnd.query(queryTimeEdgesScnd[br], 0, C-1, ac, bc-1);
    // countEdges-=edgesFrst.query(queryTimeEdgesFrst[br-1], 0, C-1, ac-1, ac-1)-edgesFrst.query(queryTimeEdgesFrst[ar-1], 0, C-1, ac-1, ac-1);
    // countEdges-=edgesFrst.query(queryTimeEdgesFrst[br-1], 0, C-1, bc+1, bc+1)-edgesFrst.query(queryTimeEdgesFrst[ar-1], 0, C-1, bc+1, bc+1);

    countSquares+=edgesScnd.query(queryTimeEdgesScnd[ar], 0, C-1, ac, bc-1)-edgesScnd.query(queryTimeEdgesScnd[ar-1], 0, C-1, ac, bc-1);
    countSquares+=edgesScnd.query(queryTimeEdgesScnd[br], 0, C-1, ac, bc-1)-edgesScnd.query(queryTimeEdgesScnd[br-1], 0, C-1, ac, bc-1);
    countSquares+=edgesFrst.query(queryTimeEdgesFrst[br-1], 0, C-1, ac, ac)-edgesFrst.query(queryTimeEdgesFrst[ar-1], 0, C-1, ac, ac);
    countSquares+=edgesFrst.query(queryTimeEdgesFrst[br-1], 0, C-1, bc, bc)-edgesFrst.query(queryTimeEdgesFrst[ar-1], 0, C-1, bc, bc);



    if (nodes.query(queryTimeNodes[ar], 0, C-1, ac, ac) - nodes.query(queryTimeNodes[ar-1], 0, C-1, ac, ac)) countSquares++;
    if (nodes.query(queryTimeNodes[br], 0, C-1, ac, ac) - nodes.query(queryTimeNodes[br-1], 0, C-1, ac, ac)) countSquares++;
    if (nodes.query(queryTimeNodes[ar], 0, C-1, bc, bc) - nodes.query(queryTimeNodes[ar-1], 0, C-1, bc, bc)) countSquares++;
    if (nodes.query(queryTimeNodes[br], 0, C-1, bc, bc) - nodes.query(queryTimeNodes[br-1], 0, C-1, bc, bc)) countSquares++;




    // cerr << "edges:" << countEdges << " " << "nodes:" << countNodes << " " << "squares:" << countSquares << " " <<  "connected:" << connected << "\n";


    return countEdges-countNodes-countSquares+1;
}

# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 852 KB Output is correct
2 Correct 12 ms 3276 KB Output is correct
3 Correct 5 ms 912 KB Output is correct
4 Correct 6 ms 1264 KB Output is correct
5 Correct 14 ms 3920 KB Output is correct
6 Correct 1 ms 308 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 308 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 7 ms 1412 KB Output is correct
12 Correct 10 ms 2520 KB Output is correct
13 Correct 16 ms 4448 KB Output is correct
14 Correct 25 ms 7112 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 2369 ms 368480 KB Output is correct
4 Execution timed out 3069 ms 680612 KB Time limit exceeded
5 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1701 ms 685236 KB Output is correct
3 Correct 1594 ms 620192 KB Output is correct
4 Correct 1688 ms 700664 KB Output is correct
5 Correct 1247 ms 494540 KB Output is correct
6 Correct 362 ms 159120 KB Output is correct
7 Correct 742 ms 342428 KB Output is correct
8 Correct 1466 ms 547204 KB Output is correct
9 Correct 1301 ms 407056 KB Output is correct
10 Correct 334 ms 115112 KB Output is correct
11 Correct 864 ms 298020 KB Output is correct
12 Correct 1793 ms 685392 KB Output is correct
13 Correct 1605 ms 620212 KB Output is correct
14 Correct 1621 ms 700616 KB Output is correct
15 Correct 1282 ms 494512 KB Output is correct
16 Correct 307 ms 127152 KB Output is correct
17 Correct 707 ms 342684 KB Output is correct
18 Correct 1606 ms 693820 KB Output is correct
19 Correct 1842 ms 701308 KB Output is correct
20 Correct 1715 ms 700912 KB Output is correct
21 Correct 1474 ms 547232 KB Output is correct
22 Correct 1254 ms 407200 KB Output is correct
23 Correct 290 ms 115164 KB Output is correct
24 Correct 753 ms 298116 KB Output is correct
25 Correct 1759 ms 685424 KB Output is correct
26 Correct 1642 ms 620208 KB Output is correct
27 Correct 1629 ms 700752 KB Output is correct
28 Correct 1258 ms 494596 KB Output is correct
29 Correct 341 ms 127216 KB Output is correct
30 Correct 741 ms 342680 KB Output is correct
31 Correct 1592 ms 693956 KB Output is correct
32 Correct 1737 ms 701236 KB Output is correct
33 Correct 1728 ms 701004 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 852 KB Output is correct
2 Correct 12 ms 3276 KB Output is correct
3 Correct 5 ms 912 KB Output is correct
4 Correct 6 ms 1264 KB Output is correct
5 Correct 14 ms 3920 KB Output is correct
6 Correct 1 ms 308 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 308 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 7 ms 1412 KB Output is correct
12 Correct 10 ms 2520 KB Output is correct
13 Correct 16 ms 4448 KB Output is correct
14 Correct 25 ms 7112 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1727 ms 235700 KB Output is correct
19 Correct 614 ms 16448 KB Output is correct
20 Correct 363 ms 5236 KB Output is correct
21 Correct 421 ms 7396 KB Output is correct
22 Correct 444 ms 10024 KB Output is correct
23 Correct 576 ms 16388 KB Output is correct
24 Correct 375 ms 6900 KB Output is correct
25 Correct 447 ms 8716 KB Output is correct
26 Correct 444 ms 9112 KB Output is correct
27 Correct 1305 ms 213208 KB Output is correct
28 Correct 877 ms 104980 KB Output is correct
29 Correct 1178 ms 203900 KB Output is correct
30 Correct 2204 ms 404392 KB Output is correct
31 Correct 9 ms 596 KB Output is correct
32 Correct 1867 ms 212172 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 4 ms 852 KB Output is correct
2 Correct 12 ms 3276 KB Output is correct
3 Correct 5 ms 912 KB Output is correct
4 Correct 6 ms 1264 KB Output is correct
5 Correct 14 ms 3920 KB Output is correct
6 Correct 1 ms 308 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 308 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 7 ms 1412 KB Output is correct
12 Correct 10 ms 2520 KB Output is correct
13 Correct 16 ms 4448 KB Output is correct
14 Correct 25 ms 7112 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1727 ms 235700 KB Output is correct
19 Correct 614 ms 16448 KB Output is correct
20 Correct 363 ms 5236 KB Output is correct
21 Correct 421 ms 7396 KB Output is correct
22 Correct 444 ms 10024 KB Output is correct
23 Correct 576 ms 16388 KB Output is correct
24 Correct 375 ms 6900 KB Output is correct
25 Correct 447 ms 8716 KB Output is correct
26 Correct 444 ms 9112 KB Output is correct
27 Correct 1305 ms 213208 KB Output is correct
28 Correct 877 ms 104980 KB Output is correct
29 Correct 1178 ms 203900 KB Output is correct
30 Correct 2204 ms 404392 KB Output is correct
31 Correct 9 ms 596 KB Output is correct
32 Correct 1867 ms 212172 KB Output is correct
33 Correct 1701 ms 685236 KB Output is correct
34 Correct 1594 ms 620192 KB Output is correct
35 Correct 1688 ms 700664 KB Output is correct
36 Correct 1247 ms 494540 KB Output is correct
37 Correct 362 ms 159120 KB Output is correct
38 Correct 742 ms 342428 KB Output is correct
39 Correct 1466 ms 547204 KB Output is correct
40 Correct 1301 ms 407056 KB Output is correct
41 Correct 334 ms 115112 KB Output is correct
42 Correct 864 ms 298020 KB Output is correct
43 Correct 1793 ms 685392 KB Output is correct
44 Correct 1605 ms 620212 KB Output is correct
45 Correct 1621 ms 700616 KB Output is correct
46 Correct 1282 ms 494512 KB Output is correct
47 Correct 307 ms 127152 KB Output is correct
48 Correct 707 ms 342684 KB Output is correct
49 Correct 1606 ms 693820 KB Output is correct
50 Correct 1842 ms 701308 KB Output is correct
51 Correct 1715 ms 700912 KB Output is correct
52 Correct 1474 ms 547232 KB Output is correct
53 Correct 1254 ms 407200 KB Output is correct
54 Correct 290 ms 115164 KB Output is correct
55 Correct 753 ms 298116 KB Output is correct
56 Correct 1759 ms 685424 KB Output is correct
57 Correct 1642 ms 620208 KB Output is correct
58 Correct 1629 ms 700752 KB Output is correct
59 Correct 1258 ms 494596 KB Output is correct
60 Correct 341 ms 127216 KB Output is correct
61 Correct 741 ms 342680 KB Output is correct
62 Correct 1592 ms 693956 KB Output is correct
63 Correct 1737 ms 701236 KB Output is correct
64 Correct 1728 ms 701004 KB Output is correct
65 Correct 2369 ms 368480 KB Output is correct
66 Execution timed out 3069 ms 680612 KB Time limit exceeded
67 Halted 0 ms 0 KB -