Submission #731392

# Submission time Handle Problem Language Result Execution time Memory
731392 2023-04-27T11:37:32 Z PanosPask trapezoid (balkan11_trapezoid) C++14
100 / 100
114 ms 9168 KB
#include <bits/stdc++.h>
#define MOD 30013

using namespace std;

struct item {
    int num, oc;
};
typedef struct item Item;

Item IDENTITY = {INT_MIN, 0};
Item single(int a)
{
    Item i = {a, 1};
    return i;
}

Item merge(const Item& a, const Item& b)
{
    if (a.num == b.num)
        return {a.num, (a.oc + b.oc) % MOD};

    if (a.num > b.num)
        return a;
    else
        return b;
}

struct segtree {

    int size;
    vector<Item> tree;

    void init(int n) {
        size = 1;
        while (size < n)
            size *= 2;

        tree.assign(2 * size, IDENTITY);
    }

    void add(int i, Item v, int x, int lx, int rx) {
        if (lx == rx - 1) {
            tree[x] = merge(tree[x], v);
            return;
        }

        int mid = (lx + rx) / 2;
        if (i < mid)
            add(i, v, 2 * x + 1, lx, mid);
        else
            add(i, v, 2 * x + 2, mid, rx);

        tree[x] = merge(tree[2 * x + 1], tree[2 * x + 2]);
    }
    void add(int i, Item v) {
        add(i, v, 0, 0, size);
    }

    Item get(int l, int r, int x, int lx, int rx) {
        if (l >= rx || lx >= r) {
            // Disjoint segments
            return IDENTITY;
        }
        else if (l <= lx && rx <= r) {
            // Fully contained
            return tree[x];
        }

        int mid = (lx + rx) / 2;
        auto it1 = get(l, r, 2 * x + 1, lx, mid);
        auto it2 = get(l, r, 2 * x + 2, mid, rx);

        return merge(it1, it2);
    }
    Item get(int l, int r) {
        return get(l, r, 0, 0, size);
    }
};

struct trapezoidside {
    bool isfirst;
    int top, bottom;
    int id;

    bool operator < (trapezoidside& b) {
        return this->top < b.top;
    }
};
typedef struct trapezoidside TrapezoidSide;

int n;
vector<int> bottomcord;
vector<TrapezoidSide> sides;
vector<Item> best_cardinality;
segtree Avail_Trapezoids;

int getBottom(int x)
{
    return lower_bound(bottomcord.begin(), bottomcord.end(), x) - bottomcord.begin();
}

int main(void)
{
    scanf("%d", &n);
    sides.resize(2 * n);
    best_cardinality.resize(n);
    bottomcord.push_back(0);
    for (int i = 0; i < n; i++) {
        int a, b, c, d;
        scanf("%d %d %d %d", &a, &b, &c, &d);
        sides[2 * i].top = a;
        sides[2 * i].bottom = c;
        sides[2 * i].isfirst = true;
        sides[2 * i].id = sides[2 * i + 1].id = i;
        sides[2 * i + 1].top = b;
        sides[2 * i + 1].bottom = d;
        sides[2 * i + 1].isfirst = false;

        bottomcord.push_back(c);
        bottomcord.push_back(d);
    }

    sort(bottomcord.begin(), bottomcord.end());
    sort(sides.begin(), sides.end());

    Avail_Trapezoids.init(bottomcord.size());
    Avail_Trapezoids.add(0, single(0));
    for (auto Side : sides) {
        if (Side.isfirst) {
            // Find the best cardinality with this trapezoid as the latest
            auto prev_card = Avail_Trapezoids.get(0, getBottom(Side.bottom) + 1);
            best_cardinality[Side.id].num = (prev_card.num + 1) % MOD;
            best_cardinality[Side.id].oc = prev_card.oc;
        }
        else {
            // This trapezoid can enter the available set
            Item card = best_cardinality[Side.id];
            Avail_Trapezoids.add(getBottom(Side.bottom), card);
        }
    }

    Item ans = Avail_Trapezoids.get(0, bottomcord.size());
    printf("%d %d\n", ans.num, ans.oc);
    return 0;
}

Compilation message

trapezoid.cpp: In function 'int main()':
trapezoid.cpp:105:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  105 |     scanf("%d", &n);
      |     ~~~~~^~~~~~~~~~
trapezoid.cpp:111:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  111 |         scanf("%d %d %d %d", &a, &b, &c, &d);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 2 ms 468 KB Output is correct
6 Correct 3 ms 596 KB Output is correct
7 Correct 4 ms 596 KB Output is correct
8 Correct 6 ms 852 KB Output is correct
9 Correct 12 ms 1364 KB Output is correct
10 Correct 18 ms 2384 KB Output is correct
11 Correct 26 ms 2544 KB Output is correct
12 Correct 57 ms 4828 KB Output is correct
13 Correct 66 ms 5192 KB Output is correct
14 Correct 86 ms 7812 KB Output is correct
15 Correct 91 ms 8044 KB Output is correct
16 Correct 105 ms 8240 KB Output is correct
17 Correct 106 ms 8640 KB Output is correct
18 Correct 81 ms 8748 KB Output is correct
19 Correct 100 ms 8992 KB Output is correct
20 Correct 114 ms 9168 KB Output is correct