// Check sqrt decomposition CPH to understand this solution well
// Basically combined two solutions, one works well for regions with smaller size
// The other works well for regions with larger size
// Set the line between larger and smaller as sqrt(n) or so and apply the appropriate algo for best results
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2e5+10;
bool vis[25001];
int n,r,q,cnt=1, a[maxn], st[maxn], en[maxn], B[maxn];
unordered_map<int,int> calc[25001];
vector<int> adj[maxn], v[25001];
void dfs(int s, int p = -1)
{
st[s] = cnt++;
for(auto u : adj[s])
if(u!=p) dfs(u,s);
en[s] = cnt-1;
}
int32_t main()
{
cin >> n >> r >> q >> a[1];
for(int i = 2; i <= n; i++)
{
int x; cin >> x >> a[i];
adj[x].push_back(i);
}
int K = sqrt(n);
dfs(1); for(int i = 1; i <= n; i++) B[st[i]]=i;
for(int i = 1; i <= n; i++) v[a[B[i]]].push_back(st[B[i]]);
for(int i = 1; i <= n; i++)
{
if(vis[a[B[i]]]) continue;
if(v[a[B[i]]].size()<=K) continue;
vis[a[B[i]]]=true;
int pref[n+2]{0};
for(auto u : v[a[B[i]]])
{
int l = st[B[u]], r = en[B[u]];
pref[l]++, pref[r+1]--;
}
for(int j = 1; j <= n; j++)
pref[j]+=pref[j-1], calc[a[B[j]]][a[B[i]]]+=pref[j];
}
while(q--)
{
int a, b, ans = 0; cin >> a >> b;
if(v[a].size()<=K){
for(auto u : v[a]){
int l = st[B[u]], r = en[B[u]];
auto itr = upper_bound(v[b].begin(), v[b].end(), r)-v[b].begin();
auto itr2 = upper_bound(v[b].begin(), v[b].end(), l)-v[b].begin();
if(itr) itr--, ans+=max((int)(itr-itr2)+1, 0);
}
}
else ans = calc[b][a];
cout << ans << endl;
}
}
Compilation message
regions.cpp: In function 'int32_t main()':
regions.cpp:34:29: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
34 | if(v[a[B[i]]].size()<=K) continue;
| ~~~~~~~~~~~~~~~~~^~~
regions.cpp:48:23: warning: comparison of integer expressions of different signedness: 'std::vector<int>::size_type' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
48 | if(v[a].size()<=K){
| ~~~~~~~~~~~^~~
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
4 ms |
6864 KB |
Output is correct |
2 |
Correct |
4 ms |
6864 KB |
Output is correct |
3 |
Correct |
5 ms |
6864 KB |
Output is correct |
4 |
Correct |
7 ms |
6864 KB |
Output is correct |
5 |
Correct |
10 ms |
6920 KB |
Output is correct |
6 |
Correct |
24 ms |
6992 KB |
Output is correct |
7 |
Correct |
31 ms |
7056 KB |
Output is correct |
8 |
Correct |
36 ms |
6992 KB |
Output is correct |
9 |
Correct |
45 ms |
7376 KB |
Output is correct |
10 |
Correct |
80 ms |
7440 KB |
Output is correct |
11 |
Correct |
136 ms |
7788 KB |
Output is correct |
12 |
Correct |
128 ms |
8144 KB |
Output is correct |
13 |
Correct |
168 ms |
7844 KB |
Output is correct |
14 |
Correct |
184 ms |
8608 KB |
Output is correct |
15 |
Correct |
314 ms |
10900 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1801 ms |
11644 KB |
Output is correct |
2 |
Correct |
1921 ms |
10560 KB |
Output is correct |
3 |
Correct |
2582 ms |
13304 KB |
Output is correct |
4 |
Correct |
249 ms |
8412 KB |
Output is correct |
5 |
Correct |
349 ms |
10096 KB |
Output is correct |
6 |
Correct |
785 ms |
27676 KB |
Output is correct |
7 |
Correct |
1325 ms |
31100 KB |
Output is correct |
8 |
Correct |
1796 ms |
57032 KB |
Output is correct |
9 |
Correct |
2073 ms |
15652 KB |
Output is correct |
10 |
Correct |
4216 ms |
118488 KB |
Output is correct |
11 |
Correct |
3777 ms |
15380 KB |
Output is correct |
12 |
Correct |
1466 ms |
20040 KB |
Output is correct |
13 |
Correct |
2175 ms |
19816 KB |
Output is correct |
14 |
Correct |
2618 ms |
33444 KB |
Output is correct |
15 |
Correct |
3479 ms |
25452 KB |
Output is correct |
16 |
Correct |
3454 ms |
30864 KB |
Output is correct |
17 |
Correct |
3118 ms |
42260 KB |
Output is correct |