Submission #73005

#TimeUsernameProblemLanguageResultExecution timeMemory
73005Benq유괴 2 (JOI17_abduction2)C++14
100 / 100
1466 ms193652 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 50005; template<class T, int SZ> struct RMQ { T stor[SZ][32-__builtin_clz(SZ)]; T comb(T a, T b) { return max(a,b); } void build(vector<T>& x) { F0R(i,sz(x)) stor[i][0] = x[i]; FOR(j,1,32-__builtin_clz(SZ)) F0R(i,SZ-(1<<(j-1))) stor[i][j] = comb(stor[i][j-1], stor[i+(1<<(j-1))][j-1]); } T query(int l, int r) { int x = 31-__builtin_clz(r-l+1); return comb(stor[l][x],stor[r-(1<<x)+1][x]); } int getLst(int pos, int val) { int lo = 0, hi = pos-1; while (lo < hi) { int mid = (lo+hi+1)/2; if (query(mid,pos-1) > val) lo = mid; else hi = mid-1; } return lo; } int getFst(int pos, int val) { int lo = pos+1, hi = SZ-1; while (lo < hi) { int mid = (lo+hi)/2; if (query(pos+1,mid) > val) hi = mid; else lo = mid+1; } return lo; } }; namespace mapOp { const int tmp = chrono::high_resolution_clock::now().time_since_epoch().count(); template<class T> struct hsh { size_t operator()(const T& x) const { return hash<T>{}(x)^tmp; // avoid anti-hash tests? } }; template<class a, class b> using um = gp_hash_table<a,b,hsh<a>>; template<class a, class b> b get(um<a,b>& u, a x) { if (u.find(x) == u.end()) return 0; return u[x]; } } using namespace mapOp; RMQ<int,MX> R[2]; um<int,ll> dp[2][MX]; int H,W,Q; vi A,B; ll get(int ind, int r, int c) { if (dp[ind][r].find(c) != dp[ind][r].end()) return dp[ind][r][c]; ll res = 0; if (ind == 0) { int r0 = R[0].getLst(r,B[c]), r1 = R[0].getFst(r,B[c]); res = max(res,r0 >= 1?get(1,r0,c)+r-r0:r-1); res = max(res,r1 <= H?get(1,r1,c)+r1-r:H-r); } else { int c0 = R[1].getLst(c,A[r]), c1 = R[1].getFst(c,A[r]); res = max(res,c0 >= 1?get(0,r,c0)+c-c0:c-1); res = max(res,c1 <= W?get(0,r,c1)+c1-c:W-c); } return dp[ind][r][c] = res; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cin >> H >> W >> Q; A.resize(H+1), B.resize(W+1); FOR(i,1,H+1) cin >> A[i]; FOR(i,1,W+1) cin >> B[i]; R[0].build(A), R[1].build(B); F0R(i,Q) { int S,T; cin >> S >> T; cout << max(get(0,S,T),get(1,S,T)) << "\n"; } } /* Look for: * the exact constraints (multiple sets are too slow for n=10^6 :( ) * special cases (n=1?) * overflow (ll vs int?) * array bounds * if you have no idea just guess the appropriate well-known algo instead of doing nothing :/ */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...