답안 #728109

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
728109 2023-04-22T02:39:44 Z SanguineChameleon 육각형 영역 (APIO21_hexagon) C++17
100 / 100
1279 ms 114256 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

#ifdef KAMIRULEZ
	const bool local = true;
	const int subtask = 6;
#else
	const bool local = false;
	const int subtask = -1;
#endif

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;
const int dx[7] = {0, 0, 1, 1, 0, -1, -1};
const int dy[7] = {0, 1, 1, 0, -1, -1, 0};

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

ostream& operator<<(ostream &out, point p) {
	out << "(" << p.x << "," << p.y << ")";
	return out;
}

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

ostream& operator<<(ostream &out, line L) {
	if (L.type == 1) {
		out << "(bottom,";
	}
	else {
		out << "(top,";
	}
	out << L.p1 << "," << L.p2 << ")";
	return out;
}

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}

	long long calc_top() {
		long long top_len = (right_y - right_min) % mod;
		return top_len * (top_len + 1) % mod * one_half % mod;
	}

	long long calc_bottom() {
		long long bottom_len = (left_min - left_y) % mod;
		return bottom_len * (bottom_len + 1) % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, column Col) {
	out << "(" << Col.x << ",(" << Col.left_y << "," << Col.right_y << "),min=" << Col.min_dist << ",(" << Col.left_min << "," << Col.right_min << "))";
	return out;
}

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, comp C) {
	out << "(" << C.bottom << "," << C.top << ",(" << C.left_x << "," << C.right_x << "))";
	return out;
}

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

long long calc_inc(long long L, long long R, long long W) {
	if (L == R) {
		return W * L % mod * (L + 1) % mod * one_half % mod;
	}
	long long res = 0;
	for (long long x = L; x <= R; x++) {
		res += x * (x + 1) % mod * one_half % mod;
		res %= mod;
	}
	return res;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	long long width = right_x - left_x + 1;
	long long height_left = top.eval_x(left_x) - bottom.eval_x(left_x) + 1;
	long long height_right = top.eval_x(right_x) - bottom.eval_x(right_x) + 1;
	long long nxt_left_y = bottom.eval_x(right_x);
	long long nxt_right_y = top.eval_x(right_x);
	long long nxt_left_min = max(Col.left_min, nxt_left_y);
	long long nxt_right_min = min(Col.right_min + right_x - left_x, nxt_right_y);
	long long nxt_min_dist = Col.min_dist + right_x - left_x;
	long long top_height_left = Col.right_y - Col.right_min;
	long long top_height_right = nxt_right_y - nxt_right_min;
	long long bottom_height_left = Col.left_min - Col.left_y;
	long long bottom_height_right = nxt_left_min - nxt_left_y;
	long long B_sum_top = calc_inc(top_height_right, top_height_left, width);
	long long B_sum_bottom = calc_inc(bottom_height_right, bottom_height_left, width);
	long long A_sum = (height_left + height_right) % mod * width % mod * one_half % mod;
	long long B_off1 = A_sum * Col.min_dist % mod;
	long long B_off2 = 0;
	if (height_left == height_right) {
		B_off2 = height_left * (width - 1) % mod * width % mod * one_half % mod;
	}
	if (height_left < height_right) {
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = (rect + tri) % mod;
	}
	if (height_left > height_right) {
		swap(height_left, height_right);
		long long diff = (height_right - height_left) % mod;
		long long rect = height_left * (width - 1) % mod * width % mod * one_half % mod;
		long long tri = diff * (diff + 1) % mod * (diff * 2 + 1) % mod * one_half % mod * one_third % mod;
		B_off2 = ((width - 1) * A_sum % mod + (mod - (rect + tri) % mod)) % mod;
		swap(height_left, height_right);
	}
	long long res = (A_sum * A + (B_sum_top + B_sum_bottom + B_off1 + B_off2) % mod * B) % mod;
	return make_pair(res, column(right_x, nxt_left_y, nxt_right_y, nxt_min_dist, nxt_left_min, nxt_right_min));
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	Col.x = -Col.x;
	Col.left_y = -Col.left_y;
	Col.right_y = -Col.right_y;
	swap(Col.left_y, Col.right_y);
	Col.left_min = -Col.left_min;
	Col.right_min = -Col.right_min;
	swap(Col.left_min, Col.right_min);
	left_x = -left_x;
	right_x = -right_x;
	swap(left_x, right_x);
	bottom.p1.x = -bottom.p1.x;
	bottom.p1.y = -bottom.p1.y;
	bottom.p2.x = -bottom.p2.x;
	bottom.p2.y = -bottom.p2.y;
	swap(bottom.p1, bottom.p2);
	top.p1.x = -top.p1.x;
	top.p1.y = -top.p1.y;
	top.p2.x = -top.p2.x;
	top.p2.y = -top.p2.y;
	swap(top.p1, top.p2);
	swap(bottom, top);
	auto p_right = move_right(Col, bottom, top, left_x, right_x, A, B);
	p_right.second.left_y = -p_right.second.left_y;
	p_right.second.right_y = -p_right.second.right_y;
	swap(p_right.second.left_y, p_right.second.right_y);
	p_right.second.left_min = -p_right.second.left_min;
	p_right.second.right_min = -p_right.second.right_min;
	swap(p_right.second.left_min, p_right.second.right_min);
	return p_right;
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	if (N == 3 && (!local || subtask == 1 || subtask == 2)) {
		int len = L[0] + 1;
		long long A_sum = 1LL * len * (len + 1) % mod * one_half % mod;
		long long B_sum = 1LL * len * (len - 1) % mod * one_half % mod + (len - 1) * len % mod * (len * 2 - 1) % mod * one_half % mod * one_third % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
	long long L_sum = 0;
	for (int i = 0; i < N; i++) {
		L_sum += L[i];
	}
	if (L_sum <= 2000 && (!local || subtask == 3)) {
		vector<vector<bool>> border(4069, vector<bool>(4069, false));
		vector<vector<int>> dist(4069, vector<int>(4069, -1));
		int cx = 0;
		int cy = 0;
		for (int i = 0; i < N; i++) {
			for (int j = 0; j < L[i]; j++) {
				cx += dx[D[i]];
				cy += dy[D[i]];
				border[cx + 2023][cy + 2023] = true;
			}
		}
		deque<pair<int, int>> q = {{0, 0}};
		dist[0][0] = -2;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && !border[nx][ny] && dist[nx][ny] == -1) {
					dist[nx][ny] = -2;
					q.push_back({nx, ny});
				}
			}
		}
		q.push_back({2023, 2023});
		dist[2023][2023] = 0;
		long long res = 0;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			res += 1LL * B * dist[cx][cy] + A;
			res %= mod;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && dist[nx][ny] == -1) {
					dist[nx][ny] = dist[cx][cy] + 1;
					q.push_back({nx, ny});
				}
			}
		}
		return res;
	}
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) <= min(comps[lid].top.p2.y + 1, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
		}
	}
	if (B == 0 && (!local || subtask == 4 || subtask == 5)) {
		long long res = 0;
		for (auto C: comps) {
			res += C.calc();
			res %= mod;
		}
		if (res < 0) {
			res += mod;
		}
		res = res * A % mod;
		return res;
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
				break;
			}
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 304 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 300 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 296 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 654 ms 67564 KB Output is correct
2 Correct 643 ms 67572 KB Output is correct
3 Correct 647 ms 67520 KB Output is correct
4 Correct 644 ms 67564 KB Output is correct
5 Correct 661 ms 67784 KB Output is correct
6 Correct 673 ms 67928 KB Output is correct
7 Correct 652 ms 67548 KB Output is correct
8 Correct 705 ms 67552 KB Output is correct
9 Correct 665 ms 67552 KB Output is correct
10 Correct 651 ms 67548 KB Output is correct
11 Correct 665 ms 67652 KB Output is correct
12 Correct 641 ms 67572 KB Output is correct
13 Correct 661 ms 67528 KB Output is correct
14 Correct 657 ms 67556 KB Output is correct
15 Correct 643 ms 67820 KB Output is correct
16 Correct 649 ms 67584 KB Output is correct
17 Correct 658 ms 67520 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 10 ms 3236 KB Output is correct
3 Correct 3 ms 1032 KB Output is correct
4 Correct 2 ms 596 KB Output is correct
5 Correct 6 ms 1804 KB Output is correct
6 Correct 8 ms 3204 KB Output is correct
7 Correct 25 ms 8320 KB Output is correct
8 Correct 2 ms 804 KB Output is correct
9 Correct 1 ms 684 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 44 ms 24568 KB Output is correct
12 Correct 30 ms 13340 KB Output is correct
13 Correct 24 ms 13044 KB Output is correct
14 Correct 51 ms 15836 KB Output is correct
15 Correct 1 ms 560 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 296 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 7 ms 3232 KB Output is correct
5 Correct 2 ms 1032 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 5 ms 1804 KB Output is correct
8 Correct 12 ms 3304 KB Output is correct
9 Correct 29 ms 8228 KB Output is correct
10 Correct 2 ms 804 KB Output is correct
11 Correct 1 ms 724 KB Output is correct
12 Correct 1 ms 596 KB Output is correct
13 Correct 45 ms 24516 KB Output is correct
14 Correct 29 ms 13468 KB Output is correct
15 Correct 23 ms 13152 KB Output is correct
16 Correct 51 ms 15796 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 2 ms 468 KB Output is correct
19 Correct 1 ms 256 KB Output is correct
20 Correct 72 ms 25736 KB Output is correct
21 Correct 7 ms 3176 KB Output is correct
22 Correct 4 ms 1772 KB Output is correct
23 Correct 91 ms 30440 KB Output is correct
24 Correct 157 ms 53148 KB Output is correct
25 Correct 156 ms 53712 KB Output is correct
26 Correct 89 ms 26892 KB Output is correct
27 Correct 76 ms 23888 KB Output is correct
28 Correct 46 ms 13556 KB Output is correct
29 Correct 210 ms 97844 KB Output is correct
30 Correct 117 ms 52284 KB Output is correct
31 Correct 110 ms 52192 KB Output is correct
32 Correct 227 ms 90760 KB Output is correct
33 Correct 83 ms 25912 KB Output is correct
34 Correct 26 ms 9508 KB Output is correct
35 Correct 1 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 1 ms 296 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 640 ms 67648 KB Output is correct
2 Correct 658 ms 67548 KB Output is correct
3 Correct 647 ms 67528 KB Output is correct
4 Correct 656 ms 67668 KB Output is correct
5 Correct 635 ms 67644 KB Output is correct
6 Correct 641 ms 67796 KB Output is correct
7 Correct 691 ms 67544 KB Output is correct
8 Correct 636 ms 67568 KB Output is correct
9 Correct 655 ms 67576 KB Output is correct
10 Correct 641 ms 67792 KB Output is correct
11 Correct 629 ms 67660 KB Output is correct
12 Correct 647 ms 67576 KB Output is correct
13 Correct 656 ms 67572 KB Output is correct
14 Correct 646 ms 67528 KB Output is correct
15 Correct 643 ms 67564 KB Output is correct
16 Correct 662 ms 67668 KB Output is correct
17 Correct 626 ms 67660 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 7 ms 3304 KB Output is correct
20 Correct 2 ms 1128 KB Output is correct
21 Correct 1 ms 596 KB Output is correct
22 Correct 5 ms 1776 KB Output is correct
23 Correct 10 ms 3360 KB Output is correct
24 Correct 26 ms 8200 KB Output is correct
25 Correct 2 ms 804 KB Output is correct
26 Correct 1 ms 688 KB Output is correct
27 Correct 1 ms 596 KB Output is correct
28 Correct 44 ms 24592 KB Output is correct
29 Correct 27 ms 13348 KB Output is correct
30 Correct 24 ms 13056 KB Output is correct
31 Correct 47 ms 15752 KB Output is correct
32 Correct 1 ms 596 KB Output is correct
33 Correct 1 ms 468 KB Output is correct
34 Correct 1 ms 212 KB Output is correct
35 Correct 10 ms 3304 KB Output is correct
36 Correct 2 ms 804 KB Output is correct
37 Correct 2 ms 724 KB Output is correct
38 Correct 9 ms 3204 KB Output is correct
39 Correct 10 ms 3500 KB Output is correct
40 Correct 34 ms 12068 KB Output is correct
41 Correct 2 ms 932 KB Output is correct
42 Correct 2 ms 776 KB Output is correct
43 Correct 1 ms 596 KB Output is correct
44 Correct 68 ms 31152 KB Output is correct
45 Correct 38 ms 17172 KB Output is correct
46 Correct 41 ms 16612 KB Output is correct
47 Correct 34 ms 13636 KB Output is correct
48 Correct 2 ms 780 KB Output is correct
49 Correct 1 ms 596 KB Output is correct
50 Correct 1 ms 212 KB Output is correct
51 Correct 1 ms 212 KB Output is correct
52 Correct 1 ms 212 KB Output is correct
53 Correct 1 ms 212 KB Output is correct
54 Correct 1 ms 212 KB Output is correct
55 Correct 1 ms 212 KB Output is correct
56 Correct 1 ms 212 KB Output is correct
57 Correct 1 ms 300 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 300 KB Output is correct
5 Correct 345 ms 280 KB Output is correct
6 Correct 525 ms 46768 KB Output is correct
7 Correct 440 ms 46744 KB Output is correct
8 Correct 442 ms 49532 KB Output is correct
9 Correct 424 ms 1796 KB Output is correct
10 Correct 464 ms 6128 KB Output is correct
11 Correct 608 ms 6128 KB Output is correct
12 Correct 282 ms 90116 KB Output is correct
13 Correct 248 ms 90252 KB Output is correct
14 Correct 258 ms 76552 KB Output is correct
15 Correct 637 ms 56884 KB Output is correct
16 Correct 889 ms 63308 KB Output is correct
17 Correct 1279 ms 57672 KB Output is correct
18 Correct 288 ms 107928 KB Output is correct
19 Correct 32 ms 7260 KB Output is correct
20 Correct 174 ms 83688 KB Output is correct
21 Correct 1 ms 216 KB Output is correct
22 Correct 1 ms 216 KB Output is correct
23 Correct 0 ms 216 KB Output is correct
24 Correct 0 ms 212 KB Output is correct
25 Correct 1 ms 212 KB Output is correct
26 Correct 1 ms 212 KB Output is correct
27 Correct 0 ms 212 KB Output is correct
28 Correct 0 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 636 ms 67676 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 296 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 624 ms 67580 KB Output is correct
7 Correct 664 ms 67572 KB Output is correct
8 Correct 667 ms 67672 KB Output is correct
9 Correct 668 ms 67552 KB Output is correct
10 Correct 679 ms 67664 KB Output is correct
11 Correct 693 ms 67512 KB Output is correct
12 Correct 678 ms 67656 KB Output is correct
13 Correct 701 ms 67552 KB Output is correct
14 Correct 732 ms 67568 KB Output is correct
15 Correct 690 ms 67568 KB Output is correct
16 Correct 733 ms 67656 KB Output is correct
17 Correct 740 ms 67572 KB Output is correct
18 Correct 708 ms 67576 KB Output is correct
19 Correct 645 ms 67660 KB Output is correct
20 Correct 650 ms 67680 KB Output is correct
21 Correct 655 ms 67624 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 8 ms 3288 KB Output is correct
24 Correct 2 ms 1128 KB Output is correct
25 Correct 1 ms 596 KB Output is correct
26 Correct 5 ms 1776 KB Output is correct
27 Correct 9 ms 3204 KB Output is correct
28 Correct 26 ms 8208 KB Output is correct
29 Correct 2 ms 804 KB Output is correct
30 Correct 1 ms 724 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 45 ms 24520 KB Output is correct
33 Correct 29 ms 13316 KB Output is correct
34 Correct 23 ms 13148 KB Output is correct
35 Correct 46 ms 15796 KB Output is correct
36 Correct 2 ms 596 KB Output is correct
37 Correct 1 ms 544 KB Output is correct
38 Correct 1 ms 212 KB Output is correct
39 Correct 70 ms 25948 KB Output is correct
40 Correct 7 ms 3180 KB Output is correct
41 Correct 4 ms 1796 KB Output is correct
42 Correct 96 ms 30472 KB Output is correct
43 Correct 156 ms 53280 KB Output is correct
44 Correct 160 ms 53784 KB Output is correct
45 Correct 95 ms 27024 KB Output is correct
46 Correct 76 ms 24032 KB Output is correct
47 Correct 46 ms 13556 KB Output is correct
48 Correct 207 ms 97800 KB Output is correct
49 Correct 113 ms 52340 KB Output is correct
50 Correct 106 ms 52412 KB Output is correct
51 Correct 229 ms 91008 KB Output is correct
52 Correct 78 ms 26092 KB Output is correct
53 Correct 26 ms 9576 KB Output is correct
54 Correct 1 ms 296 KB Output is correct
55 Correct 9 ms 3204 KB Output is correct
56 Correct 2 ms 804 KB Output is correct
57 Correct 2 ms 596 KB Output is correct
58 Correct 8 ms 3204 KB Output is correct
59 Correct 10 ms 3556 KB Output is correct
60 Correct 32 ms 12096 KB Output is correct
61 Correct 2 ms 896 KB Output is correct
62 Correct 1 ms 776 KB Output is correct
63 Correct 1 ms 556 KB Output is correct
64 Correct 63 ms 31244 KB Output is correct
65 Correct 37 ms 17180 KB Output is correct
66 Correct 37 ms 16604 KB Output is correct
67 Correct 32 ms 13564 KB Output is correct
68 Correct 1 ms 872 KB Output is correct
69 Correct 1 ms 556 KB Output is correct
70 Correct 324 ms 284 KB Output is correct
71 Correct 514 ms 46744 KB Output is correct
72 Correct 430 ms 46828 KB Output is correct
73 Correct 400 ms 49396 KB Output is correct
74 Correct 414 ms 1816 KB Output is correct
75 Correct 451 ms 6128 KB Output is correct
76 Correct 600 ms 6128 KB Output is correct
77 Correct 310 ms 90104 KB Output is correct
78 Correct 324 ms 90280 KB Output is correct
79 Correct 296 ms 76408 KB Output is correct
80 Correct 623 ms 56976 KB Output is correct
81 Correct 882 ms 63308 KB Output is correct
82 Correct 1279 ms 57616 KB Output is correct
83 Correct 291 ms 107964 KB Output is correct
84 Correct 32 ms 7284 KB Output is correct
85 Correct 170 ms 83648 KB Output is correct
86 Correct 351 ms 320 KB Output is correct
87 Correct 449 ms 25236 KB Output is correct
88 Correct 311 ms 3460 KB Output is correct
89 Correct 166 ms 1332 KB Output is correct
90 Correct 607 ms 34332 KB Output is correct
91 Correct 710 ms 59040 KB Output is correct
92 Correct 650 ms 63480 KB Output is correct
93 Correct 109 ms 40788 KB Output is correct
94 Correct 82 ms 26520 KB Output is correct
95 Correct 61 ms 17836 KB Output is correct
96 Correct 808 ms 114256 KB Output is correct
97 Correct 505 ms 70072 KB Output is correct
98 Correct 782 ms 66948 KB Output is correct
99 Correct 166 ms 59940 KB Output is correct
100 Correct 104 ms 31792 KB Output is correct
101 Correct 30 ms 12404 KB Output is correct
102 Correct 0 ms 216 KB Output is correct
103 Correct 0 ms 216 KB Output is correct
104 Correct 1 ms 300 KB Output is correct
105 Correct 0 ms 300 KB Output is correct
106 Correct 1 ms 212 KB Output is correct
107 Correct 1 ms 212 KB Output is correct
108 Correct 1 ms 212 KB Output is correct
109 Correct 1 ms 212 KB Output is correct