Submission #728097

# Submission time Handle Problem Language Result Execution time Memory
728097 2023-04-22T01:47:37 Z SanguineChameleon Hexagonal Territory (APIO21_hexagon) C++17
66 / 100
2000 ms 97668 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

#ifdef KAMIRULEZ
	const bool local = true;
	const int subtask = 6;
#else
	const bool local = false;
	const int subtask = -1;
#endif

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;
const int dx[7] = {0, 0, 1, 1, 0, -1, -1};
const int dy[7] = {0, 1, 1, 0, -1, -1, 0};

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

ostream& operator<<(ostream &out, point p) {
	out << "(" << p.x << "," << p.y << ")";
	return out;
}

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

ostream& operator<<(ostream &out, line L) {
	if (L.type == 1) {
		out << "(bottom,";
	}
	else {
		out << "(top,";
	}
	out << L.p1 << "," << L.p2 << ")";
	return out;
}

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
};

ostream& operator<<(ostream &out, column Col) {
	out << "(" << Col.x << ",(" << Col.left_y << "," << Col.right_y << "),min=" << Col.min_dist << ",(" << Col.left_min << "," << Col.right_min << "))";
	return out;
}

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, comp C) {
	out << "(" << C.bottom << "," << C.top << ",(" << C.left_x << "," << C.right_x << "))";
	return out;
}

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	long long A_sum = 0;
	long long B_sum = 0;
	long long B_off1 = 0;
	long long B_off2 = 0;
	column cur = Col;
	for (int x = left_x; x <= right_x; x++) {
		A_sum += cur.calc(1, 0);
		A_sum %= mod;
		B_off1 += cur.calc(1, 0) * Col.min_dist % mod;
		B_off1 %= mod;
		B_off2 += cur.calc(1, 0) * (cur.min_dist - Col.min_dist) % mod;
		B_off2 %= mod;
		long long tmp = cur.min_dist;
		cur.min_dist = 0;
		B_sum += cur.calc(0, 1);
		B_sum %= mod;
		cur.min_dist = tmp;
		if (x == right_x) {
			break;
		}
		column nxt = move_right_one(cur, column(x + 1, bottom.eval_x(x + 1), top.eval_x(x + 1)));
		cur = nxt;
	}
	long long res = (A_sum * A + (B_sum + B_off1 + B_off2) % mod * B) % mod;
	return make_pair(res, cur);
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	Col.x = -Col.x;
	Col.left_y = -Col.left_y;
	Col.right_y = -Col.right_y;
	swap(Col.left_y, Col.right_y);
	Col.left_min = -Col.left_min;
	Col.right_min = -Col.right_min;
	swap(Col.left_min, Col.right_min);
	left_x = -left_x;
	right_x = -right_x;
	swap(left_x, right_x);
	bottom.p1.x = -bottom.p1.x;
	bottom.p1.y = -bottom.p1.y;
	bottom.p2.x = -bottom.p2.x;
	bottom.p2.y = -bottom.p2.y;
	swap(bottom.p1, bottom.p2);
	top.p1.x = -top.p1.x;
	top.p1.y = -top.p1.y;
	top.p2.x = -top.p2.x;
	top.p2.y = -top.p2.y;
	swap(top.p1, top.p2);
	swap(bottom, top);
	auto p_right = move_right(Col, bottom, top, left_x, right_x, A, B);
	p_right.second.left_y = -p_right.second.left_y;
	p_right.second.right_y = -p_right.second.right_y;
	swap(p_right.second.left_y, p_right.second.right_y);
	p_right.second.left_min = -p_right.second.left_min;
	p_right.second.right_min = -p_right.second.right_min;
	swap(p_right.second.left_min, p_right.second.right_min);
	return p_right;
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	if (N == 3 && (!local || subtask == 1 || subtask == 2)) {
		int len = L[0] + 1;
		long long A_sum = 1LL * len * (len + 1) % mod * one_half % mod;
		long long B_sum = 1LL * len * (len - 1) % mod * one_half % mod + (len - 1) * len % mod * (len * 2 - 1) % mod * one_half % mod * one_third % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
	long long L_sum = 0;
	for (int i = 0; i < N; i++) {
		L_sum += L[i];
	}
	if (L_sum <= 2000 && (!local || subtask == 3)) {
		vector<vector<bool>> border(4069, vector<bool>(4069, false));
		vector<vector<int>> dist(4069, vector<int>(4069, -1));
		int cx = 0;
		int cy = 0;
		for (int i = 0; i < N; i++) {
			for (int j = 0; j < L[i]; j++) {
				cx += dx[D[i]];
				cy += dy[D[i]];
				border[cx + 2023][cy + 2023] = true;
			}
		}
		deque<pair<int, int>> q = {{0, 0}};
		dist[0][0] = -2;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && !border[nx][ny] && dist[nx][ny] == -1) {
					dist[nx][ny] = -2;
					q.push_back({nx, ny});
				}
			}
		}
		q.push_back({2023, 2023});
		dist[2023][2023] = 0;
		long long res = 0;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			res += 1LL * B * dist[cx][cy] + A;
			res %= mod;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && dist[nx][ny] == -1) {
					dist[nx][ny] = dist[cx][cy] + 1;
					q.push_back({nx, ny});
				}
			}
		}
		return res;
	}
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) <= min(comps[lid].top.p2.y + 1, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
		}
	}
	if (B == 0 && (!local || subtask == 4 || subtask == 5)) {
		long long res = 0;
		for (auto C: comps) {
			res += C.calc();
			res %= mod;
		}
		if (res < 0) {
			res += mod;
		}
		res = res * A % mod;
		return res;
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
				break;
			}
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 300 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 678 ms 67644 KB Output is correct
2 Correct 712 ms 67660 KB Output is correct
3 Correct 775 ms 67520 KB Output is correct
4 Correct 639 ms 67532 KB Output is correct
5 Correct 736 ms 67652 KB Output is correct
6 Correct 743 ms 67572 KB Output is correct
7 Correct 684 ms 67540 KB Output is correct
8 Correct 722 ms 67788 KB Output is correct
9 Correct 713 ms 67656 KB Output is correct
10 Correct 689 ms 67548 KB Output is correct
11 Correct 727 ms 67644 KB Output is correct
12 Correct 680 ms 67576 KB Output is correct
13 Correct 680 ms 67560 KB Output is correct
14 Correct 637 ms 67664 KB Output is correct
15 Correct 692 ms 67676 KB Output is correct
16 Correct 706 ms 67644 KB Output is correct
17 Correct 715 ms 67564 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 296 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 8 ms 3276 KB Output is correct
3 Correct 3 ms 1032 KB Output is correct
4 Correct 1 ms 596 KB Output is correct
5 Correct 5 ms 1804 KB Output is correct
6 Correct 9 ms 3204 KB Output is correct
7 Correct 31 ms 8304 KB Output is correct
8 Correct 2 ms 804 KB Output is correct
9 Correct 2 ms 724 KB Output is correct
10 Correct 1 ms 492 KB Output is correct
11 Correct 45 ms 24524 KB Output is correct
12 Correct 27 ms 13300 KB Output is correct
13 Correct 32 ms 13052 KB Output is correct
14 Correct 47 ms 15760 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 304 KB Output is correct
4 Correct 7 ms 3232 KB Output is correct
5 Correct 3 ms 1032 KB Output is correct
6 Correct 2 ms 596 KB Output is correct
7 Correct 4 ms 1804 KB Output is correct
8 Correct 8 ms 3204 KB Output is correct
9 Correct 26 ms 8288 KB Output is correct
10 Correct 2 ms 804 KB Output is correct
11 Correct 1 ms 724 KB Output is correct
12 Correct 2 ms 492 KB Output is correct
13 Correct 45 ms 24484 KB Output is correct
14 Correct 29 ms 13304 KB Output is correct
15 Correct 22 ms 13052 KB Output is correct
16 Correct 46 ms 15764 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 71 ms 25620 KB Output is correct
21 Correct 8 ms 3208 KB Output is correct
22 Correct 4 ms 1772 KB Output is correct
23 Correct 104 ms 30320 KB Output is correct
24 Correct 159 ms 53072 KB Output is correct
25 Correct 167 ms 53572 KB Output is correct
26 Correct 89 ms 26864 KB Output is correct
27 Correct 87 ms 23724 KB Output is correct
28 Correct 46 ms 13464 KB Output is correct
29 Correct 208 ms 97536 KB Output is correct
30 Correct 106 ms 52144 KB Output is correct
31 Correct 107 ms 52152 KB Output is correct
32 Correct 234 ms 90620 KB Output is correct
33 Correct 82 ms 25868 KB Output is correct
34 Correct 28 ms 9392 KB Output is correct
35 Correct 1 ms 296 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 648 ms 67788 KB Output is correct
2 Correct 641 ms 67656 KB Output is correct
3 Correct 619 ms 67704 KB Output is correct
4 Correct 617 ms 67688 KB Output is correct
5 Correct 665 ms 67816 KB Output is correct
6 Correct 622 ms 67564 KB Output is correct
7 Correct 626 ms 67640 KB Output is correct
8 Correct 630 ms 67572 KB Output is correct
9 Correct 659 ms 67652 KB Output is correct
10 Correct 684 ms 67680 KB Output is correct
11 Correct 664 ms 67680 KB Output is correct
12 Correct 669 ms 67684 KB Output is correct
13 Correct 631 ms 67792 KB Output is correct
14 Correct 644 ms 67560 KB Output is correct
15 Correct 625 ms 67584 KB Output is correct
16 Correct 619 ms 67676 KB Output is correct
17 Correct 637 ms 67556 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 7 ms 3264 KB Output is correct
20 Correct 2 ms 1032 KB Output is correct
21 Correct 1 ms 596 KB Output is correct
22 Correct 5 ms 1804 KB Output is correct
23 Correct 8 ms 3304 KB Output is correct
24 Correct 27 ms 8184 KB Output is correct
25 Correct 2 ms 764 KB Output is correct
26 Correct 1 ms 724 KB Output is correct
27 Correct 1 ms 492 KB Output is correct
28 Correct 45 ms 24544 KB Output is correct
29 Correct 27 ms 13300 KB Output is correct
30 Correct 23 ms 13028 KB Output is correct
31 Correct 53 ms 15792 KB Output is correct
32 Correct 1 ms 648 KB Output is correct
33 Correct 1 ms 468 KB Output is correct
34 Correct 3 ms 212 KB Output is correct
35 Correct 13 ms 3204 KB Output is correct
36 Correct 4 ms 804 KB Output is correct
37 Correct 4 ms 676 KB Output is correct
38 Correct 11 ms 3176 KB Output is correct
39 Correct 12 ms 3556 KB Output is correct
40 Correct 34 ms 12092 KB Output is correct
41 Correct 5 ms 932 KB Output is correct
42 Correct 5 ms 776 KB Output is correct
43 Correct 5 ms 596 KB Output is correct
44 Correct 74 ms 31168 KB Output is correct
45 Correct 40 ms 17040 KB Output is correct
46 Correct 42 ms 16460 KB Output is correct
47 Correct 32 ms 13428 KB Output is correct
48 Correct 7 ms 780 KB Output is correct
49 Correct 6 ms 552 KB Output is correct
50 Correct 1 ms 212 KB Output is correct
51 Correct 0 ms 212 KB Output is correct
52 Correct 1 ms 212 KB Output is correct
53 Correct 1 ms 212 KB Output is correct
54 Correct 1 ms 212 KB Output is correct
55 Correct 1 ms 212 KB Output is correct
56 Correct 1 ms 212 KB Output is correct
57 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 304 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Execution timed out 2077 ms 212 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 639 ms 67548 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 300 KB Output is correct
6 Correct 634 ms 67528 KB Output is correct
7 Correct 666 ms 67780 KB Output is correct
8 Correct 637 ms 67684 KB Output is correct
9 Correct 648 ms 67644 KB Output is correct
10 Correct 696 ms 67532 KB Output is correct
11 Correct 662 ms 67568 KB Output is correct
12 Correct 668 ms 67572 KB Output is correct
13 Correct 685 ms 67660 KB Output is correct
14 Correct 641 ms 67812 KB Output is correct
15 Correct 647 ms 67644 KB Output is correct
16 Correct 639 ms 67520 KB Output is correct
17 Correct 660 ms 67568 KB Output is correct
18 Correct 660 ms 67684 KB Output is correct
19 Correct 645 ms 67564 KB Output is correct
20 Correct 664 ms 67780 KB Output is correct
21 Correct 657 ms 67520 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 9 ms 3304 KB Output is correct
24 Correct 2 ms 1032 KB Output is correct
25 Correct 1 ms 596 KB Output is correct
26 Correct 4 ms 1804 KB Output is correct
27 Correct 8 ms 3304 KB Output is correct
28 Correct 25 ms 8288 KB Output is correct
29 Correct 2 ms 772 KB Output is correct
30 Correct 1 ms 724 KB Output is correct
31 Correct 1 ms 492 KB Output is correct
32 Correct 43 ms 24436 KB Output is correct
33 Correct 27 ms 13264 KB Output is correct
34 Correct 23 ms 13048 KB Output is correct
35 Correct 48 ms 15716 KB Output is correct
36 Correct 2 ms 596 KB Output is correct
37 Correct 1 ms 468 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 74 ms 25680 KB Output is correct
40 Correct 8 ms 3196 KB Output is correct
41 Correct 3 ms 1800 KB Output is correct
42 Correct 92 ms 30264 KB Output is correct
43 Correct 182 ms 53024 KB Output is correct
44 Correct 163 ms 53564 KB Output is correct
45 Correct 97 ms 26764 KB Output is correct
46 Correct 72 ms 23728 KB Output is correct
47 Correct 52 ms 13460 KB Output is correct
48 Correct 214 ms 97668 KB Output is correct
49 Correct 111 ms 52152 KB Output is correct
50 Correct 119 ms 52128 KB Output is correct
51 Correct 227 ms 90764 KB Output is correct
52 Correct 74 ms 25792 KB Output is correct
53 Correct 26 ms 9428 KB Output is correct
54 Correct 2 ms 212 KB Output is correct
55 Correct 12 ms 3332 KB Output is correct
56 Correct 4 ms 764 KB Output is correct
57 Correct 4 ms 596 KB Output is correct
58 Correct 12 ms 3204 KB Output is correct
59 Correct 13 ms 3536 KB Output is correct
60 Correct 35 ms 12028 KB Output is correct
61 Correct 5 ms 896 KB Output is correct
62 Correct 6 ms 776 KB Output is correct
63 Correct 5 ms 596 KB Output is correct
64 Correct 60 ms 31128 KB Output is correct
65 Correct 40 ms 17156 KB Output is correct
66 Correct 40 ms 16540 KB Output is correct
67 Correct 35 ms 13552 KB Output is correct
68 Correct 7 ms 780 KB Output is correct
69 Correct 7 ms 596 KB Output is correct
70 Execution timed out 2077 ms 212 KB Time limit exceeded
71 Halted 0 ms 0 KB -