Submission #728096

# Submission time Handle Problem Language Result Execution time Memory
728096 2023-04-22T01:35:42 Z SanguineChameleon Hexagonal Territory (APIO21_hexagon) C++17
66 / 100
2000 ms 98712 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

#ifdef KAMIRULEZ
	const bool local = true;
	const int subtask = 6;
#else
	const bool local = false;
	const int subtask = -1;
#endif

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;
const int dx[7] = {0, 0, 1, 1, 0, -1, -1};
const int dy[7] = {0, 1, 1, 0, -1, -1, 0};

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

ostream& operator<<(ostream &out, point p) {
	out << "(" << p.x << "," << p.y << ")";
	return out;
}

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

ostream& operator<<(ostream &out, line L) {
	if (L.type == 1) {
		out << "(bottom,";
	}
	else {
		out << "(top,";
	}
	out << L.p1 << "," << L.p2 << ")";
	return out;
}

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
};

ostream& operator<<(ostream &out, column Col) {
	out << "(" << Col.x << ",(" << Col.left_y << "," << Col.right_y << "),min=" << Col.min_dist << ",(" << Col.left_min << "," << Col.right_min << "))";
	return out;
}

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, comp C) {
	out << "(" << C.bottom << "," << C.top << ",(" << C.left_x << "," << C.right_x << "))";
	return out;
}

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	column cur = Col;
	long long res = cur.calc(A, B);
	for (int x = left_x + 1; x <= right_x; x++) {
		column nxt = move_right_one(cur, column(x, bottom.eval_x(x), top.eval_x(x)));
		res += nxt.calc(A, B);
		res %= mod;
		cur = nxt;
	}
	return make_pair(res, cur);
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	Col.x = -Col.x;
	Col.left_y = -Col.left_y;
	Col.right_y = -Col.right_y;
	swap(Col.left_y, Col.right_y);
	Col.left_min = -Col.left_min;
	Col.right_min = -Col.right_min;
	swap(Col.left_min, Col.right_min);
	left_x = -left_x;
	right_x = -right_x;
	swap(left_x, right_x);
	bottom.p1.x = -bottom.p1.x;
	bottom.p1.y = -bottom.p1.y;
	bottom.p2.x = -bottom.p2.x;
	bottom.p2.y = -bottom.p2.y;
	swap(bottom.p1, bottom.p2);
	top.p1.x = -top.p1.x;
	top.p1.y = -top.p1.y;
	top.p2.x = -top.p2.x;
	top.p2.y = -top.p2.y;
	swap(top.p1, top.p2);
	swap(bottom, top);
	auto p_right = move_right(Col, bottom, top, left_x, right_x, A, B);
	p_right.second.left_y = -p_right.second.left_y;
	p_right.second.right_y = -p_right.second.right_y;
	swap(p_right.second.left_y, p_right.second.right_y);
	p_right.second.left_min = -p_right.second.left_min;
	p_right.second.right_min = -p_right.second.right_min;
	swap(p_right.second.left_min, p_right.second.right_min);
	return p_right;
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	if (N == 3 && (!local || subtask == 1 || subtask == 2)) {
		int len = L[0] + 1;
		long long A_sum = 1LL * len * (len + 1) % mod * one_half % mod;
		long long B_sum = 1LL * len * (len - 1) % mod * one_half % mod + (len - 1) * len % mod * (len * 2 - 1) % mod * one_half % mod * one_third % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
	long long L_sum = 0;
	for (int i = 0; i < N; i++) {
		L_sum += L[i];
	}
	if (L_sum <= 2000 && (!local || subtask == 3)) {
		vector<vector<bool>> border(4069, vector<bool>(4069, false));
		vector<vector<int>> dist(4069, vector<int>(4069, -1));
		int cx = 0;
		int cy = 0;
		for (int i = 0; i < N; i++) {
			for (int j = 0; j < L[i]; j++) {
				cx += dx[D[i]];
				cy += dy[D[i]];
				border[cx + 2023][cy + 2023] = true;
			}
		}
		deque<pair<int, int>> q = {{0, 0}};
		dist[0][0] = -2;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && !border[nx][ny] && dist[nx][ny] == -1) {
					dist[nx][ny] = -2;
					q.push_back({nx, ny});
				}
			}
		}
		q.push_back({2023, 2023});
		dist[2023][2023] = 0;
		long long res = 0;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			res += 1LL * B * dist[cx][cy] + A;
			res %= mod;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && dist[nx][ny] == -1) {
					dist[nx][ny] = dist[cx][cy] + 1;
					q.push_back({nx, ny});
				}
			}
		}
		return res;
	}
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) <= min(comps[lid].top.p2.y + 1, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
		}
	}
	if (B == 0 && (!local || subtask == 4 || subtask == 5)) {
		long long res = 0;
		for (auto C: comps) {
			res += C.calc();
			res %= mod;
		}
		if (res < 0) {
			res += mod;
		}
		res = res * A % mod;
		return res;
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
				break;
			}
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 300 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 296 KB Output is correct
10 Correct 1 ms 300 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 618 ms 67560 KB Output is correct
2 Correct 609 ms 67676 KB Output is correct
3 Correct 643 ms 67572 KB Output is correct
4 Correct 609 ms 67676 KB Output is correct
5 Correct 601 ms 67672 KB Output is correct
6 Correct 623 ms 67664 KB Output is correct
7 Correct 628 ms 67664 KB Output is correct
8 Correct 611 ms 67796 KB Output is correct
9 Correct 622 ms 67668 KB Output is correct
10 Correct 596 ms 67696 KB Output is correct
11 Correct 654 ms 67692 KB Output is correct
12 Correct 627 ms 67564 KB Output is correct
13 Correct 696 ms 67644 KB Output is correct
14 Correct 617 ms 67568 KB Output is correct
15 Correct 626 ms 67576 KB Output is correct
16 Correct 634 ms 67560 KB Output is correct
17 Correct 627 ms 67692 KB Output is correct
18 Correct 1 ms 296 KB Output is correct
19 Correct 1 ms 300 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 7 ms 3236 KB Output is correct
3 Correct 2 ms 1032 KB Output is correct
4 Correct 1 ms 560 KB Output is correct
5 Correct 4 ms 1804 KB Output is correct
6 Correct 9 ms 3332 KB Output is correct
7 Correct 25 ms 8232 KB Output is correct
8 Correct 2 ms 804 KB Output is correct
9 Correct 1 ms 724 KB Output is correct
10 Correct 1 ms 596 KB Output is correct
11 Correct 52 ms 24528 KB Output is correct
12 Correct 38 ms 13428 KB Output is correct
13 Correct 25 ms 13120 KB Output is correct
14 Correct 46 ms 15856 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 1 ms 556 KB Output is correct
17 Correct 0 ms 296 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 296 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 300 KB Output is correct
4 Correct 8 ms 3304 KB Output is correct
5 Correct 3 ms 1124 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 5 ms 1804 KB Output is correct
8 Correct 8 ms 3204 KB Output is correct
9 Correct 26 ms 8268 KB Output is correct
10 Correct 2 ms 804 KB Output is correct
11 Correct 1 ms 724 KB Output is correct
12 Correct 1 ms 552 KB Output is correct
13 Correct 44 ms 24592 KB Output is correct
14 Correct 28 ms 13436 KB Output is correct
15 Correct 23 ms 13148 KB Output is correct
16 Correct 55 ms 15760 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 69 ms 26060 KB Output is correct
21 Correct 8 ms 3204 KB Output is correct
22 Correct 4 ms 1772 KB Output is correct
23 Correct 93 ms 30932 KB Output is correct
24 Correct 163 ms 53980 KB Output is correct
25 Correct 157 ms 54656 KB Output is correct
26 Correct 91 ms 27292 KB Output is correct
27 Correct 69 ms 24076 KB Output is correct
28 Correct 49 ms 13556 KB Output is correct
29 Correct 200 ms 98704 KB Output is correct
30 Correct 104 ms 53296 KB Output is correct
31 Correct 106 ms 53244 KB Output is correct
32 Correct 231 ms 91520 KB Output is correct
33 Correct 72 ms 26236 KB Output is correct
34 Correct 27 ms 9548 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 0 ms 300 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 620 ms 67576 KB Output is correct
2 Correct 627 ms 67664 KB Output is correct
3 Correct 624 ms 67560 KB Output is correct
4 Correct 603 ms 67788 KB Output is correct
5 Correct 635 ms 67652 KB Output is correct
6 Correct 586 ms 67780 KB Output is correct
7 Correct 665 ms 67536 KB Output is correct
8 Correct 604 ms 67548 KB Output is correct
9 Correct 600 ms 67448 KB Output is correct
10 Correct 625 ms 67684 KB Output is correct
11 Correct 616 ms 67528 KB Output is correct
12 Correct 588 ms 67520 KB Output is correct
13 Correct 584 ms 67524 KB Output is correct
14 Correct 583 ms 67788 KB Output is correct
15 Correct 599 ms 67536 KB Output is correct
16 Correct 604 ms 67536 KB Output is correct
17 Correct 591 ms 67504 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 7 ms 3276 KB Output is correct
20 Correct 2 ms 1124 KB Output is correct
21 Correct 1 ms 596 KB Output is correct
22 Correct 5 ms 1804 KB Output is correct
23 Correct 8 ms 3332 KB Output is correct
24 Correct 25 ms 8196 KB Output is correct
25 Correct 2 ms 804 KB Output is correct
26 Correct 1 ms 724 KB Output is correct
27 Correct 1 ms 556 KB Output is correct
28 Correct 41 ms 24544 KB Output is correct
29 Correct 27 ms 13332 KB Output is correct
30 Correct 22 ms 13048 KB Output is correct
31 Correct 48 ms 15812 KB Output is correct
32 Correct 1 ms 596 KB Output is correct
33 Correct 1 ms 468 KB Output is correct
34 Correct 2 ms 300 KB Output is correct
35 Correct 10 ms 3204 KB Output is correct
36 Correct 3 ms 804 KB Output is correct
37 Correct 4 ms 596 KB Output is correct
38 Correct 11 ms 3172 KB Output is correct
39 Correct 12 ms 3556 KB Output is correct
40 Correct 35 ms 12084 KB Output is correct
41 Correct 5 ms 932 KB Output is correct
42 Correct 5 ms 736 KB Output is correct
43 Correct 5 ms 596 KB Output is correct
44 Correct 59 ms 31256 KB Output is correct
45 Correct 40 ms 17268 KB Output is correct
46 Correct 37 ms 16644 KB Output is correct
47 Correct 33 ms 13552 KB Output is correct
48 Correct 7 ms 780 KB Output is correct
49 Correct 6 ms 552 KB Output is correct
50 Correct 1 ms 212 KB Output is correct
51 Correct 0 ms 212 KB Output is correct
52 Correct 1 ms 212 KB Output is correct
53 Correct 1 ms 212 KB Output is correct
54 Correct 1 ms 212 KB Output is correct
55 Correct 1 ms 212 KB Output is correct
56 Correct 1 ms 300 KB Output is correct
57 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 296 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Execution timed out 2085 ms 276 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 611 ms 67668 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 594 ms 67516 KB Output is correct
7 Correct 601 ms 67668 KB Output is correct
8 Correct 588 ms 67688 KB Output is correct
9 Correct 585 ms 67572 KB Output is correct
10 Correct 590 ms 67532 KB Output is correct
11 Correct 613 ms 67772 KB Output is correct
12 Correct 579 ms 67532 KB Output is correct
13 Correct 583 ms 67576 KB Output is correct
14 Correct 597 ms 67772 KB Output is correct
15 Correct 607 ms 67692 KB Output is correct
16 Correct 599 ms 67556 KB Output is correct
17 Correct 589 ms 67588 KB Output is correct
18 Correct 594 ms 67692 KB Output is correct
19 Correct 596 ms 67788 KB Output is correct
20 Correct 595 ms 67772 KB Output is correct
21 Correct 601 ms 67520 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 9 ms 3272 KB Output is correct
24 Correct 2 ms 1032 KB Output is correct
25 Correct 1 ms 596 KB Output is correct
26 Correct 4 ms 1776 KB Output is correct
27 Correct 8 ms 3220 KB Output is correct
28 Correct 27 ms 8308 KB Output is correct
29 Correct 2 ms 804 KB Output is correct
30 Correct 1 ms 724 KB Output is correct
31 Correct 1 ms 492 KB Output is correct
32 Correct 43 ms 24588 KB Output is correct
33 Correct 27 ms 13328 KB Output is correct
34 Correct 22 ms 13152 KB Output is correct
35 Correct 46 ms 15764 KB Output is correct
36 Correct 1 ms 596 KB Output is correct
37 Correct 1 ms 468 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 67 ms 26108 KB Output is correct
40 Correct 7 ms 3292 KB Output is correct
41 Correct 4 ms 1772 KB Output is correct
42 Correct 89 ms 30992 KB Output is correct
43 Correct 146 ms 53928 KB Output is correct
44 Correct 153 ms 54708 KB Output is correct
45 Correct 85 ms 27292 KB Output is correct
46 Correct 70 ms 24044 KB Output is correct
47 Correct 46 ms 13684 KB Output is correct
48 Correct 200 ms 98712 KB Output is correct
49 Correct 104 ms 53312 KB Output is correct
50 Correct 100 ms 53316 KB Output is correct
51 Correct 219 ms 91600 KB Output is correct
52 Correct 72 ms 26180 KB Output is correct
53 Correct 25 ms 9660 KB Output is correct
54 Correct 3 ms 300 KB Output is correct
55 Correct 10 ms 3204 KB Output is correct
56 Correct 3 ms 804 KB Output is correct
57 Correct 4 ms 596 KB Output is correct
58 Correct 13 ms 3176 KB Output is correct
59 Correct 12 ms 3532 KB Output is correct
60 Correct 34 ms 12092 KB Output is correct
61 Correct 5 ms 932 KB Output is correct
62 Correct 6 ms 776 KB Output is correct
63 Correct 5 ms 596 KB Output is correct
64 Correct 64 ms 31204 KB Output is correct
65 Correct 37 ms 17192 KB Output is correct
66 Correct 41 ms 16580 KB Output is correct
67 Correct 32 ms 13560 KB Output is correct
68 Correct 7 ms 856 KB Output is correct
69 Correct 7 ms 596 KB Output is correct
70 Execution timed out 2084 ms 304 KB Time limit exceeded
71 Halted 0 ms 0 KB -