Submission #727892

# Submission time Handle Problem Language Result Execution time Memory
727892 2023-04-21T14:17:48 Z SanguineChameleon Hexagonal Territory (APIO21_hexagon) C++17
66 / 100
2000 ms 97448 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

#ifdef KAMIRULEZ
	const bool local = true;
	const int subtask = 6;
#else
	const bool local = false;
	const int subtask = -1;
#endif

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;
const int dx[7] = {0, 0, 1, 1, 0, -1, -1};
const int dy[7] = {0, 1, 1, 0, -1, -1, 0};

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

ostream& operator<<(ostream &out, point p) {
	out << "(" << p.x << "," << p.y << ")";
	return out;
}

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

ostream& operator<<(ostream &out, line L) {
	if (L.type == 1) {
		out << "(bottom,";
	}
	else {
		out << "(top,";
	}
	out << L.p1 << "," << L.p2 << ")";
	return out;
}

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
};

ostream& operator<<(ostream &out, column Col) {
	out << "(" << Col.x << ",(" << Col.left_y << "," << Col.right_y << "),min=" << Col.min_dist << ",(" << Col.left_min << "," << Col.right_min << "))";
	return out;
}

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, comp C) {
	out << "(" << C.bottom << "," << C.top << ",(" << C.left_x << "," << C.right_x << "))";
	return out;
}

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	column cur = Col;
	long long res = cur.calc(A, B);
	for (int x = left_x + 1; x <= right_x; x++) {
		column nxt = move_right_one(cur, column(x, bottom.eval_x(x), top.eval_x(x)));
		res += nxt.calc(A, B);
		res %= mod;
		cur = nxt;
	}
	return make_pair(res, cur);
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	column cur = Col;
	long long res = cur.calc(A, B);
	for (int x = right_x - 1; x >= left_x; x--) {
		column nxt = move_left_one(cur, column(x, bottom.eval_x(x), top.eval_x(x)));
		res += nxt.calc(A, B);
		res %= mod;
		cur = nxt;
	}
	return make_pair(res, cur);
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	if (N == 3 && (!local || subtask == 1 || subtask == 2)) {
		int len = L[0] + 1;
		long long A_sum = 1LL * len * (len + 1) % mod * one_half % mod;
		long long B_sum = 1LL * len * (len - 1) % mod * one_half % mod + (len - 1) * len % mod * (len * 2 - 1) % mod * one_half % mod * one_third % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
	long long L_sum = 0;
	for (int i = 0; i < N; i++) {
		L_sum += L[i];
	}
	if (L_sum <= 2000 && (!local || subtask == 3)) {
		vector<vector<bool>> border(4069, vector<bool>(4069, false));
		vector<vector<int>> dist(4069, vector<int>(4069, -1));
		int cx = 0;
		int cy = 0;
		for (int i = 0; i < N; i++) {
			for (int j = 0; j < L[i]; j++) {
				cx += dx[D[i]];
				cy += dy[D[i]];
				border[cx + 2023][cy + 2023] = true;
			}
		}
		deque<pair<int, int>> q = {{0, 0}};
		dist[0][0] = -2;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && !border[nx][ny] && dist[nx][ny] == -1) {
					dist[nx][ny] = -2;
					q.push_back({nx, ny});
				}
			}
		}
		q.push_back({2023, 2023});
		dist[2023][2023] = 0;
		long long res = 0;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			res += 1LL * B * dist[cx][cy] + A;
			res %= mod;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && dist[nx][ny] == -1) {
					dist[nx][ny] = dist[cx][cy] + 1;
					q.push_back({nx, ny});
				}
			}
		}
		return res;
	}
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) <= min(comps[lid].top.p2.y + 1, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
		}
	}
	if (B == 0 && (!local || subtask == 4 || subtask == 5)) {
		long long res = 0;
		for (auto C: comps) {
			res += C.calc();
			res %= mod;
		}
		if (res < 0) {
			res += mod;
		}
		res = res * A % mod;
		return res;
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
				break;
			}
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 606 ms 67528 KB Output is correct
2 Correct 597 ms 67728 KB Output is correct
3 Correct 612 ms 67568 KB Output is correct
4 Correct 621 ms 67664 KB Output is correct
5 Correct 622 ms 67740 KB Output is correct
6 Correct 618 ms 67552 KB Output is correct
7 Correct 620 ms 67556 KB Output is correct
8 Correct 610 ms 67560 KB Output is correct
9 Correct 630 ms 67532 KB Output is correct
10 Correct 626 ms 67560 KB Output is correct
11 Correct 611 ms 67680 KB Output is correct
12 Correct 608 ms 67648 KB Output is correct
13 Correct 614 ms 67796 KB Output is correct
14 Correct 615 ms 67564 KB Output is correct
15 Correct 628 ms 67568 KB Output is correct
16 Correct 615 ms 67560 KB Output is correct
17 Correct 614 ms 67528 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 7 ms 3184 KB Output is correct
3 Correct 2 ms 1032 KB Output is correct
4 Correct 1 ms 596 KB Output is correct
5 Correct 5 ms 1804 KB Output is correct
6 Correct 9 ms 3204 KB Output is correct
7 Correct 29 ms 8088 KB Output is correct
8 Correct 2 ms 804 KB Output is correct
9 Correct 2 ms 724 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 49 ms 24320 KB Output is correct
12 Correct 30 ms 13168 KB Output is correct
13 Correct 25 ms 12924 KB Output is correct
14 Correct 51 ms 15600 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 9 ms 3264 KB Output is correct
5 Correct 2 ms 1032 KB Output is correct
6 Correct 1 ms 596 KB Output is correct
7 Correct 5 ms 1804 KB Output is correct
8 Correct 8 ms 3176 KB Output is correct
9 Correct 25 ms 8072 KB Output is correct
10 Correct 3 ms 804 KB Output is correct
11 Correct 1 ms 724 KB Output is correct
12 Correct 1 ms 468 KB Output is correct
13 Correct 49 ms 24296 KB Output is correct
14 Correct 27 ms 13180 KB Output is correct
15 Correct 24 ms 12868 KB Output is correct
16 Correct 49 ms 15604 KB Output is correct
17 Correct 1 ms 596 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 71 ms 25488 KB Output is correct
21 Correct 8 ms 3204 KB Output is correct
22 Correct 5 ms 1772 KB Output is correct
23 Correct 96 ms 30084 KB Output is correct
24 Correct 152 ms 52900 KB Output is correct
25 Correct 163 ms 53396 KB Output is correct
26 Correct 87 ms 26656 KB Output is correct
27 Correct 69 ms 23600 KB Output is correct
28 Correct 48 ms 13244 KB Output is correct
29 Correct 204 ms 97404 KB Output is correct
30 Correct 107 ms 51956 KB Output is correct
31 Correct 110 ms 52020 KB Output is correct
32 Correct 217 ms 90608 KB Output is correct
33 Correct 77 ms 25740 KB Output is correct
34 Correct 27 ms 9236 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 0 ms 212 KB Output is correct
37 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 618 ms 67536 KB Output is correct
2 Correct 624 ms 67572 KB Output is correct
3 Correct 624 ms 67516 KB Output is correct
4 Correct 621 ms 67512 KB Output is correct
5 Correct 620 ms 67532 KB Output is correct
6 Correct 622 ms 67644 KB Output is correct
7 Correct 657 ms 67772 KB Output is correct
8 Correct 647 ms 67572 KB Output is correct
9 Correct 671 ms 67552 KB Output is correct
10 Correct 629 ms 67620 KB Output is correct
11 Correct 635 ms 67556 KB Output is correct
12 Correct 616 ms 67676 KB Output is correct
13 Correct 613 ms 67644 KB Output is correct
14 Correct 608 ms 67664 KB Output is correct
15 Correct 662 ms 67524 KB Output is correct
16 Correct 616 ms 67656 KB Output is correct
17 Correct 623 ms 67548 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 8 ms 3156 KB Output is correct
20 Correct 2 ms 1032 KB Output is correct
21 Correct 2 ms 596 KB Output is correct
22 Correct 4 ms 1804 KB Output is correct
23 Correct 9 ms 3204 KB Output is correct
24 Correct 25 ms 8076 KB Output is correct
25 Correct 2 ms 804 KB Output is correct
26 Correct 1 ms 724 KB Output is correct
27 Correct 1 ms 468 KB Output is correct
28 Correct 53 ms 24296 KB Output is correct
29 Correct 30 ms 13180 KB Output is correct
30 Correct 25 ms 12880 KB Output is correct
31 Correct 52 ms 15596 KB Output is correct
32 Correct 1 ms 596 KB Output is correct
33 Correct 1 ms 468 KB Output is correct
34 Correct 2 ms 212 KB Output is correct
35 Correct 10 ms 3204 KB Output is correct
36 Correct 3 ms 804 KB Output is correct
37 Correct 4 ms 596 KB Output is correct
38 Correct 11 ms 3204 KB Output is correct
39 Correct 11 ms 3488 KB Output is correct
40 Correct 35 ms 11964 KB Output is correct
41 Correct 6 ms 932 KB Output is correct
42 Correct 5 ms 776 KB Output is correct
43 Correct 5 ms 620 KB Output is correct
44 Correct 61 ms 31072 KB Output is correct
45 Correct 40 ms 16940 KB Output is correct
46 Correct 37 ms 16392 KB Output is correct
47 Correct 33 ms 13408 KB Output is correct
48 Correct 6 ms 780 KB Output is correct
49 Correct 7 ms 596 KB Output is correct
50 Correct 1 ms 212 KB Output is correct
51 Correct 0 ms 212 KB Output is correct
52 Correct 0 ms 212 KB Output is correct
53 Correct 1 ms 212 KB Output is correct
54 Correct 0 ms 212 KB Output is correct
55 Correct 1 ms 212 KB Output is correct
56 Correct 0 ms 212 KB Output is correct
57 Correct 0 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Execution timed out 2059 ms 212 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 626 ms 67652 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 666 ms 67560 KB Output is correct
7 Correct 621 ms 67800 KB Output is correct
8 Correct 620 ms 67788 KB Output is correct
9 Correct 648 ms 67644 KB Output is correct
10 Correct 636 ms 67656 KB Output is correct
11 Correct 621 ms 67564 KB Output is correct
12 Correct 653 ms 67644 KB Output is correct
13 Correct 637 ms 67540 KB Output is correct
14 Correct 618 ms 67540 KB Output is correct
15 Correct 628 ms 67660 KB Output is correct
16 Correct 626 ms 67668 KB Output is correct
17 Correct 641 ms 67604 KB Output is correct
18 Correct 619 ms 67660 KB Output is correct
19 Correct 626 ms 67680 KB Output is correct
20 Correct 639 ms 67604 KB Output is correct
21 Correct 648 ms 67660 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 7 ms 3176 KB Output is correct
24 Correct 2 ms 1032 KB Output is correct
25 Correct 1 ms 596 KB Output is correct
26 Correct 4 ms 1804 KB Output is correct
27 Correct 9 ms 3204 KB Output is correct
28 Correct 27 ms 8072 KB Output is correct
29 Correct 1 ms 804 KB Output is correct
30 Correct 1 ms 724 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 46 ms 24352 KB Output is correct
33 Correct 30 ms 13180 KB Output is correct
34 Correct 26 ms 12864 KB Output is correct
35 Correct 46 ms 15628 KB Output is correct
36 Correct 1 ms 596 KB Output is correct
37 Correct 1 ms 468 KB Output is correct
38 Correct 0 ms 212 KB Output is correct
39 Correct 68 ms 25568 KB Output is correct
40 Correct 8 ms 3148 KB Output is correct
41 Correct 4 ms 1772 KB Output is correct
42 Correct 98 ms 30240 KB Output is correct
43 Correct 157 ms 52808 KB Output is correct
44 Correct 159 ms 53392 KB Output is correct
45 Correct 88 ms 26644 KB Output is correct
46 Correct 79 ms 23616 KB Output is correct
47 Correct 47 ms 13252 KB Output is correct
48 Correct 204 ms 97448 KB Output is correct
49 Correct 105 ms 52036 KB Output is correct
50 Correct 105 ms 52004 KB Output is correct
51 Correct 231 ms 90824 KB Output is correct
52 Correct 73 ms 25676 KB Output is correct
53 Correct 24 ms 9300 KB Output is correct
54 Correct 2 ms 212 KB Output is correct
55 Correct 9 ms 3204 KB Output is correct
56 Correct 3 ms 804 KB Output is correct
57 Correct 4 ms 596 KB Output is correct
58 Correct 10 ms 3204 KB Output is correct
59 Correct 11 ms 3428 KB Output is correct
60 Correct 36 ms 11912 KB Output is correct
61 Correct 5 ms 932 KB Output is correct
62 Correct 5 ms 776 KB Output is correct
63 Correct 5 ms 596 KB Output is correct
64 Correct 62 ms 31028 KB Output is correct
65 Correct 36 ms 16948 KB Output is correct
66 Correct 36 ms 16412 KB Output is correct
67 Correct 32 ms 13372 KB Output is correct
68 Correct 7 ms 840 KB Output is correct
69 Correct 7 ms 640 KB Output is correct
70 Execution timed out 2081 ms 212 KB Time limit exceeded
71 Halted 0 ms 0 KB -