답안 #727862

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
727862 2023-04-21T13:45:57 Z SanguineChameleon 육각형 영역 (APIO21_hexagon) C++17
47 / 100
2000 ms 98232 KB
#include "hexagon.h"
#include <bits/stdc++.h>
using namespace std;

#ifdef KAMIRULEZ
	const bool local = true;
	const int subtask = 6;
#else
	const bool local = false;
	const int subtask = -1;
#endif

const long long mod = 1e9 + 7;
const long long one_half = (mod + 1) / 2;
const long long one_third = (mod + 1) / 3;
const int dx[7] = {0, 0, 1, 1, 0, -1, -1};
const int dy[7] = {0, 1, 1, 0, -1, -1, 0};

struct point {
	long long x, y;

	point() {};

	point(long long _x, long long _y): x(_x), y(_y) {};

	point operator*(long long d) {
		return point(x * d, y * d);
	}

	point operator+(point p2) {
		return point(x + p2.x, y + p2.y);
	}

	long long operator^(point p2) {
		return x * p2.y - y * p2.x;
	}
};

point dv[7] = {point(0, 0), point(0, 1), point(1, 1), point(1, 0), point(0, -1), point(-1, -1), point(-1, 0)};

ostream& operator<<(ostream &out, point p) {
	out << "(" << p.x << "," << p.y << ")";
	return out;
}

struct line {
	int type, dir, len;
	point p1, p2;
	int id;

	line() {};

	line(int _type, int _dir, point _p1, point _p2, int _id): type(_type), dir(_dir), p1(_p1), p2(_p2), id(_id) {
		len = p2.x - p1.x + 1;
	};

	long long calc() {
		long long Ly = p1.y;
		long long Ry = p1.y + (dir == 1 ? 0 : len - 1);
		if (type == 1) {
			Ly = 1 - Ly;
			Ry = 1 - Ry;
		}
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}

	long long eval_x(long long x) {
		if (dir == 1) {
			return p1.y;
		}
		else {
			return p1.y + (x - p1.x);
		}
	}

	void shorten(long long left_x, long long right_x) {
		long long v1 = eval_x(left_x);
		long long v2 = eval_x(right_x);
		p1 = point(left_x, v1);
		p2 = point(right_x, v2);
	}
};

ostream& operator<<(ostream &out, line L) {
	if (L.type == 1) {
		out << "(bottom,";
	}
	else {
		out << "(top,";
	}
	out << L.p1 << "," << L.p2 << ")";
	return out;
}

bool operator<(line L1, line L2) {
	int max_x = max(L1.p1.x, L2.p1.x);
	int v1 = L1.eval_x(max_x);
	int v2 = L2.eval_x(max_x);
	if (v1 != v2) {
		return v1 < v2;
	}
	else {
		return L1.type < L2.type;
	}
};

struct column {
	long long x, left_y, right_y, min_dist, left_min, right_min;

	column() {};

	column(long long _x, long long _left_y, long long _right_y): x(_x), left_y(_left_y), right_y(_right_y) {};

	column(long long _x, long long _left_y, long long _right_y, long long _min_dist, long long _left_min, long long _right_min): x(_x), left_y(_left_y), right_y(_right_y), min_dist(_min_dist), left_min(_left_min), right_min(_right_min) {};

	long long calc(long long A, long long B) {
		long long left_len = (left_min - left_y) % mod;
		long long mid_len = (right_min - left_min + 1) % mod;
		long long right_len = (right_y - right_min) % mod;
		long long A_sum = (right_y - left_y + 1) % mod;
		long long B_sum = (min_dist * mid_len % mod + (min_dist + 1 + min_dist + left_len) * left_len % mod * one_half % mod + (min_dist + 1 + min_dist + right_len) * right_len % mod * one_half % mod) % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
};

ostream& operator<<(ostream &out, column Col) {
	out << "(" << Col.x << ",(" << Col.left_y << "," << Col.right_y << "),min=" << Col.min_dist << ",(" << Col.left_min << "," << Col.right_min << "))";
	return out;
}

struct comp {
	line bottom, top;
	int left_x, right_x, len;
	column left_col, right_col;
	long long sum;

	comp() {};

	comp(line _bottom, line _top, int _left_x, int _right_x): bottom(_bottom), top(_top), left_x(_left_x), right_x(_right_x) {
		bottom.shorten(left_x, right_x);
		top.shorten(left_x, right_x);
		len = right_x - left_x + 1;
	}

	long long calc() {
		long long Ly = top.p1.y - bottom.p1.y + 1;
		long long Ry = top.p2.y - bottom.p2.y + 1;
		return (Ly + Ry) % mod * len % mod * one_half % mod;
	}
};

ostream& operator<<(ostream &out, comp C) {
	out << "(" << C.bottom << "," << C.top << ",(" << C.left_x << "," << C.right_x << "))";
	return out;
}

column move_right_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min + 1) {
		Col2.min_dist = Col2.left_y - (Col1.right_min + 1) + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min) {
		Col2.min_dist = Col1.left_min - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min);
	Col2.right_min = min(Col2.right_y, Col1.right_min + 1);
	return Col2;
}

column move_left_one(column Col1, column Col2) {
	if (Col2.left_y > Col1.right_min) {
		Col2.min_dist = Col2.left_y - Col1.right_min + (Col1.min_dist + 1);
		Col2.left_min = Col2.left_y;
		Col2.right_min = Col2.left_y;
		return Col2;
	}
	if (Col2.right_y < Col1.left_min - 1) {
		Col2.min_dist = (Col1.left_min - 1) - Col2.right_y + (Col1.min_dist + 1);
		Col2.left_min = Col2.right_y;
		Col2.right_min = Col2.right_y;
		return Col2;
	}
	Col2.min_dist = Col1.min_dist + 1;
	Col2.left_min = max(Col2.left_y, Col1.left_min - 1);
	Col2.right_min = min(Col2.right_y, Col1.right_min);
	return Col2;
}

pair<long long, column> move_right(column Col, line bottom, line top, long long left_x, long long right_x, long long A, long long B) {
	column cur = Col;
	long long res = cur.calc(A, B);
	for (int x = left_x + 1; x <= right_x; x++) {
		column nxt = move_right_one(cur, column(x, bottom.eval_x(x), top.eval_x(x)));
		res += nxt.calc(A, B);
		res %= mod;
		cur = nxt;
	}
	return make_pair(res, cur);
}

pair<long long, column> move_left(column Col, line bottom, line top, long long right_x, long long left_x, long long A, long long B) {
	column cur = Col;
	long long res = cur.calc(A, B);
	for (int x = right_x - 1; x >= left_x; x--) {
		column nxt = move_left_one(cur, column(x, bottom.eval_x(x), top.eval_x(x)));
		res += nxt.calc(A, B);
		res %= mod;
		cur = nxt;
	}
	return make_pair(res, cur);
}

vector<comp> comps;
vector<vector<int>> adj;

void dfs(int u, int par, long long A, long long B) {
	for (auto v: adj[u]) {
		if (v == par) {
			continue;
		}
		if (comps[u].right_x + 1 == comps[v].left_x) {
			comps[v].left_col = move_right_one(comps[u].right_col, column(comps[v].left_x, comps[v].bottom.p1.y, comps[v].top.p1.y));
			auto p_right = move_right(comps[v].left_col, comps[v].bottom, comps[v].top, comps[v].left_x, comps[v].right_x, A, B);
			comps[v].sum = p_right.first;
			comps[v].right_col = p_right.second;
		}
		else {
			comps[v].right_col = move_left_one(comps[u].left_col, column(comps[v].right_x, comps[v].bottom.p2.y, comps[v].top.p2.y));
			auto p_left = move_left(comps[v].right_col, comps[v].bottom, comps[v].top, comps[v].right_x, comps[v].left_x, A, B);
			comps[v].sum = p_left.first;
			comps[v].left_col = p_left.second;
		}
		dfs(v, u, A, B);
	}
}

int draw_territory(int N, int A, int B, vector<int> D, vector<int> L) {
	if (N == 3 && (!local || subtask == 1 || subtask == 2)) {
		int len = L[0] + 1;
		long long A_sum = 1LL * len * (len + 1) % mod * one_half % mod;
		long long B_sum = 1LL * len * (len - 1) % mod * one_half % mod + (len - 1) * len % mod * (len * 2 - 1) % mod * one_half % mod * one_third % mod;
		return (A_sum * A + B_sum * B) % mod;
	}
	long long L_sum = 0;
	for (int i = 0; i < N; i++) {
		L_sum += L[i];
	}
	if (L_sum <= 2000 && (!local || subtask == 3)) {
		vector<vector<bool>> border(4069, vector<bool>(4069, false));
		vector<vector<int>> dist(4069, vector<int>(4069, -1));
		int cx = 0;
		int cy = 0;
		for (int i = 0; i < N; i++) {
			for (int j = 0; j < L[i]; j++) {
				cx += dx[D[i]];
				cy += dy[D[i]];
				border[cx + 2023][cy + 2023] = true;
			}
		}
		deque<pair<int, int>> q = {{0, 0}};
		dist[0][0] = -2;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && !border[nx][ny] && dist[nx][ny] == -1) {
					dist[nx][ny] = -2;
					q.push_back({nx, ny});
				}
			}
		}
		q.push_back({2023, 2023});
		dist[2023][2023] = 0;
		long long res = 0;
		while (!q.empty()) {
			cx = q.front().first;
			cy = q.front().second;
			res += 1LL * B * dist[cx][cy] + A;
			res %= mod;
			q.pop_front();
			for (int d = 1; d <= 6; d++) {
				int nx = cx + dx[d];
				int ny = cy + dy[d];
				if (0 <= nx && nx < 4069 && 0 <= ny && ny < 4069 && dist[nx][ny] == -1) {
					dist[nx][ny] = dist[cx][cy] + 1;
					q.push_back({nx, ny});
				}
			}
		}
		return res;
	}
	long long area = 0;
	point cur = point(0, 0);
	vector<point> poly(N);
	for (int i = 0; i < N; i++) {
		poly[i] = cur;
		cur = cur + (dv[D[i]] * L[i]);
	}
	for (int i = 0; i < N; i++) {
		area += poly[i] ^ poly[(i + 1) % N];
	}
	if (area < 0) {
		reverse(D.begin(), D.end());
		for (int i = 0; i < N; i++) {
			if (D[i] <= 3) {
				D[i] += 3;
			}
			else {
				D[i] -= 3;
			}
		}
		reverse(L.begin(), L.end());
		cur = point(0, 0);
		for (int i = 0; i < N; i++) {
			poly[i] = cur;
			cur = cur + (dv[D[i]] * L[i]);
		}
	}
	vector<line> lines;
	vector<int> prv_x;
	for (int i = 0; i < N; i++) {
		point prv = poly[(i + (N - 1)) % N];
		point cur = poly[i];
		point nxt1 = poly[(i + 1) % N];
		point nxt2 = poly[(i + 2) % N];
		if (cur.x < nxt1.x) {
			point p1 = cur;
			point p2 = nxt1;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x < cur.x) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (prv.x == cur.x && prv.y < cur.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y > nxt2.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(1, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
		if (cur.x > nxt1.x) {
			point p1 = nxt1;
			point p2 = cur;
			int dir = (cur.y == nxt1.y ? 1 : 2);
			if (prv.x > cur.x) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (prv.x == cur.x && prv.y > cur.y) {
				if (dir == 1) {
					p2 = p2 + point(-1, 0);
				}
				else {
					p2 = p2 + point(-1, -1);
				}
			}
			if (nxt1.x == nxt2.x && nxt1.y < nxt2.y) {
				if (dir == 1) {
					p1 = p1 + point(1, 0);
				}
				else {
					p1 = p1 + point(1, 1);
				}
			}
			if (p1.x <= p2.x) {
				lines.emplace_back(2, dir, p1, p2, lines.size());
				prv_x.push_back(p1.x);
			}
		}
	}
	vector<pair<int, pair<int, int>>> events;
	for (int i = 0; i < (int)lines.size(); i++) {
		events.push_back(make_pair(lines[i].p1.x - 1, make_pair(2, i)));
		events.push_back(make_pair(lines[i].p1.x, make_pair(0, i)));
		events.push_back(make_pair(lines[i].p2.x, make_pair(1, i)));
	}
	sort(events.begin(), events.end());
	set<line, less<>> S;
	for (auto e: events) {
		int cur_x = e.first;
		int type = e.second.first;
		line L = lines[e.second.second];
		auto it = (type == 0 ? S.insert(L).first : S.lower_bound(L));
		if (type == 1) {
			if (it->type == 1 && next(it) != S.end()) {
				auto bottom = it;
				auto top = next(it);
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			if (it->type == 2 && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
					comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
					prv_x[bottom->id] = cur_x + 1;
					prv_x[top->id] = cur_x + 1;
				}
			}
			S.erase(it);
		}
		if (type == 2) {
			if (it != S.end() && it != S.begin()) {
				auto bottom = prev(it);
				auto top = it;
				if (bottom->type == 1 && top->type == 2) {
					if (prv_x[bottom->id] <= cur_x && prv_x[top->id] <= cur_x) {
						comps.emplace_back(*bottom, *top, prv_x[bottom->id], cur_x);
						prv_x[bottom->id] = cur_x + 1;
						prv_x[top->id] = cur_x + 1;
					}
				}
			}
		}
	}
	adj.resize(comps.size());
	events.clear();
	for (int i = 0; i < (int)comps.size(); i++) {
		events.push_back(make_pair(comps[i].right_x + 1, make_pair(comps[i].bottom.p2.y, i)));
		events.push_back(make_pair(comps[i].left_x, make_pair(comps[i].bottom.p1.y, -i - 1)));
	}
	sort(events.begin(), events.end());
	int lid = -1;
	int rid = -1;
	int edge_cnt = 0;
	for (auto e: events) {
		if (e.second.second >= 0) {
			lid = e.second.second;
		}
		else {
			rid = -e.second.second - 1;
		}
		if (lid >= 0 && rid >= 0 && comps[lid].right_x + 1 == comps[rid].left_x && max(comps[lid].bottom.p2.y, comps[rid].bottom.p1.y) - 1 <= min(comps[lid].top.p2.y, comps[rid].top.p1.y)) {
			adj[lid].push_back(rid);
			adj[rid].push_back(lid);
			edge_cnt++;
		}
	}
	if (B == 0 && (!local || subtask == 4 || subtask == 5)) {
		long long res = 0;
		for (auto C: comps) {
			res += C.calc();
			res %= mod;
		}
		if (res < 0) {
			res += mod;
		}
		res = res * A % mod;
		return res;
	}
	int root = -1;
	for (int i = 0; i < (int)comps.size(); i++) {
		auto C = comps[i];
		if (C.left_x <= 0 && 0 <= C.right_x) {
			int left_y = C.bottom.eval_x(0);
			int right_y = C.top.eval_x(0);
			if (left_y <= 0 && 0 <= right_y) {
				column mid_col(0, left_y, right_y, 0, 0, 0);
				auto p_left = move_left(mid_col, C.bottom, C.top, 0, C.left_x, A, B);
				auto p_right = move_right(mid_col, C.bottom, C.top, 0, C.right_x, A, B);
				comps[i].left_col = p_left.second;
				comps[i].right_col = p_right.second;
				comps[i].sum = (p_left.first + p_right.first + mod - mid_col.calc(A, B)) % mod;
				root = i;
			}
			break;
		}
	}
	dfs(root, -1, A, B);
	long long res = 0;
	for (auto C: comps) {
		res += C.sum;
		res %= mod;
	}
	return res;
}
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 300 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 296 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 300 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 296 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 614 ms 67696 KB Output is correct
2 Correct 644 ms 67536 KB Output is correct
3 Correct 625 ms 67656 KB Output is correct
4 Correct 618 ms 67644 KB Output is correct
5 Correct 619 ms 67788 KB Output is correct
6 Correct 626 ms 67532 KB Output is correct
7 Correct 626 ms 67536 KB Output is correct
8 Correct 617 ms 67780 KB Output is correct
9 Correct 612 ms 67684 KB Output is correct
10 Correct 653 ms 67660 KB Output is correct
11 Correct 621 ms 67468 KB Output is correct
12 Correct 624 ms 67672 KB Output is correct
13 Correct 617 ms 67540 KB Output is correct
14 Correct 610 ms 67580 KB Output is correct
15 Correct 633 ms 67576 KB Output is correct
16 Correct 635 ms 67704 KB Output is correct
17 Correct 685 ms 67736 KB Output is correct
18 Correct 1 ms 300 KB Output is correct
19 Correct 1 ms 300 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 7 ms 3304 KB Output is correct
3 Correct 3 ms 1032 KB Output is correct
4 Correct 2 ms 596 KB Output is correct
5 Correct 7 ms 1804 KB Output is correct
6 Correct 12 ms 3204 KB Output is correct
7 Correct 29 ms 8188 KB Output is correct
8 Correct 2 ms 804 KB Output is correct
9 Correct 2 ms 724 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 59 ms 24520 KB Output is correct
12 Correct 39 ms 13416 KB Output is correct
13 Correct 23 ms 13052 KB Output is correct
14 Correct 50 ms 15796 KB Output is correct
15 Correct 1 ms 596 KB Output is correct
16 Correct 2 ms 468 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 1 ms 300 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 9 ms 3240 KB Output is correct
5 Correct 2 ms 1060 KB Output is correct
6 Correct 2 ms 596 KB Output is correct
7 Correct 5 ms 1804 KB Output is correct
8 Correct 9 ms 3216 KB Output is correct
9 Correct 24 ms 8196 KB Output is correct
10 Correct 1 ms 804 KB Output is correct
11 Correct 2 ms 684 KB Output is correct
12 Correct 1 ms 556 KB Output is correct
13 Correct 44 ms 24556 KB Output is correct
14 Correct 27 ms 13436 KB Output is correct
15 Correct 23 ms 13092 KB Output is correct
16 Correct 46 ms 15756 KB Output is correct
17 Correct 1 ms 556 KB Output is correct
18 Correct 1 ms 556 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 68 ms 26124 KB Output is correct
21 Correct 8 ms 3172 KB Output is correct
22 Correct 4 ms 1772 KB Output is correct
23 Correct 91 ms 30860 KB Output is correct
24 Correct 153 ms 53604 KB Output is correct
25 Correct 160 ms 54260 KB Output is correct
26 Correct 89 ms 27292 KB Output is correct
27 Correct 70 ms 24040 KB Output is correct
28 Correct 46 ms 13664 KB Output is correct
29 Correct 195 ms 98212 KB Output is correct
30 Correct 110 ms 52876 KB Output is correct
31 Correct 107 ms 52784 KB Output is correct
32 Correct 218 ms 91392 KB Output is correct
33 Correct 74 ms 26192 KB Output is correct
34 Correct 27 ms 9544 KB Output is correct
35 Correct 0 ms 212 KB Output is correct
36 Correct 1 ms 212 KB Output is correct
37 Correct 1 ms 212 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 597 ms 67524 KB Output is correct
2 Correct 611 ms 67780 KB Output is correct
3 Correct 613 ms 67700 KB Output is correct
4 Correct 604 ms 67532 KB Output is correct
5 Correct 641 ms 67528 KB Output is correct
6 Correct 636 ms 67664 KB Output is correct
7 Correct 625 ms 67472 KB Output is correct
8 Correct 622 ms 67540 KB Output is correct
9 Correct 613 ms 67560 KB Output is correct
10 Correct 623 ms 67656 KB Output is correct
11 Correct 625 ms 67532 KB Output is correct
12 Correct 607 ms 67572 KB Output is correct
13 Correct 610 ms 67532 KB Output is correct
14 Correct 635 ms 67544 KB Output is correct
15 Correct 630 ms 67568 KB Output is correct
16 Correct 630 ms 67544 KB Output is correct
17 Correct 613 ms 67456 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 8 ms 3272 KB Output is correct
20 Correct 2 ms 1032 KB Output is correct
21 Correct 1 ms 556 KB Output is correct
22 Correct 4 ms 1776 KB Output is correct
23 Correct 8 ms 3204 KB Output is correct
24 Correct 25 ms 8216 KB Output is correct
25 Correct 2 ms 804 KB Output is correct
26 Correct 2 ms 724 KB Output is correct
27 Correct 1 ms 596 KB Output is correct
28 Correct 45 ms 24616 KB Output is correct
29 Correct 27 ms 13344 KB Output is correct
30 Correct 23 ms 13060 KB Output is correct
31 Correct 45 ms 15760 KB Output is correct
32 Correct 1 ms 596 KB Output is correct
33 Correct 1 ms 468 KB Output is correct
34 Correct 3 ms 212 KB Output is correct
35 Correct 11 ms 3308 KB Output is correct
36 Correct 3 ms 804 KB Output is correct
37 Correct 4 ms 596 KB Output is correct
38 Runtime error 11 ms 5192 KB Execution killed with signal 11
39 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Execution timed out 2057 ms 212 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# 결과 실행 시간 메모리 Grader output
1 Correct 667 ms 67488 KB Output is correct
2 Correct 1 ms 212 KB Output is correct
3 Correct 1 ms 304 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 727 ms 67528 KB Output is correct
7 Correct 682 ms 67500 KB Output is correct
8 Correct 692 ms 67568 KB Output is correct
9 Correct 615 ms 67660 KB Output is correct
10 Correct 635 ms 67564 KB Output is correct
11 Correct 619 ms 67636 KB Output is correct
12 Correct 617 ms 67640 KB Output is correct
13 Correct 620 ms 67696 KB Output is correct
14 Correct 628 ms 67560 KB Output is correct
15 Correct 634 ms 67672 KB Output is correct
16 Correct 616 ms 67684 KB Output is correct
17 Correct 601 ms 67520 KB Output is correct
18 Correct 603 ms 67612 KB Output is correct
19 Correct 607 ms 67576 KB Output is correct
20 Correct 614 ms 67688 KB Output is correct
21 Correct 605 ms 67516 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 8 ms 3304 KB Output is correct
24 Correct 0 ms 1132 KB Output is correct
25 Correct 1 ms 596 KB Output is correct
26 Correct 5 ms 1804 KB Output is correct
27 Correct 9 ms 3208 KB Output is correct
28 Correct 25 ms 8308 KB Output is correct
29 Correct 2 ms 768 KB Output is correct
30 Correct 1 ms 724 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 44 ms 24560 KB Output is correct
33 Correct 27 ms 13348 KB Output is correct
34 Correct 23 ms 13072 KB Output is correct
35 Correct 45 ms 15860 KB Output is correct
36 Correct 1 ms 596 KB Output is correct
37 Correct 1 ms 468 KB Output is correct
38 Correct 1 ms 212 KB Output is correct
39 Correct 70 ms 26096 KB Output is correct
40 Correct 8 ms 3204 KB Output is correct
41 Correct 4 ms 1772 KB Output is correct
42 Correct 98 ms 30924 KB Output is correct
43 Correct 152 ms 53572 KB Output is correct
44 Correct 165 ms 54188 KB Output is correct
45 Correct 88 ms 27308 KB Output is correct
46 Correct 71 ms 24048 KB Output is correct
47 Correct 46 ms 13588 KB Output is correct
48 Correct 200 ms 98232 KB Output is correct
49 Correct 109 ms 52896 KB Output is correct
50 Correct 105 ms 52768 KB Output is correct
51 Correct 217 ms 91272 KB Output is correct
52 Correct 74 ms 26180 KB Output is correct
53 Correct 25 ms 9504 KB Output is correct
54 Correct 3 ms 300 KB Output is correct
55 Correct 11 ms 3204 KB Output is correct
56 Correct 3 ms 772 KB Output is correct
57 Correct 4 ms 596 KB Output is correct
58 Runtime error 10 ms 5220 KB Execution killed with signal 11
59 Halted 0 ms 0 KB -