# | 제출 시각 | 아이디 | 문제 | 언어 | 결과 | 실행 시간 | 메모리 |
---|---|---|---|---|---|---|---|
727814 | nenechan | 팀들 (IOI15_teams) | C++17 | 4040 ms | 524288 KiB |
이 제출은 이전 버전의 oj.uz에서 채점하였습니다. 현재는 제출 당시와는 다른 서버에서 채점을 하기 때문에, 다시 제출하면 결과가 달라질 수도 있습니다.
#include "teams.h"
#include <bits/stdc++.h>
using namespace std;
// The solution for a single Q would be as follow:
// - Consider all the task in increasing order of required students
// - For each required value x in that order, greedily accept students who have A <= x and lowest B possible.
// - Complexity is O(N log(N)) if using a heap as priority queue.
// Assume K is sorted increasing
// if M is 1, then we have the following solution:
// - instead of having to insert and decrease, we can just count the number of people who can work with the required condition,
// and be done with it.
// if M is 2, then the following solution has some problem:
// - after we count the number of people who can do K[0]
// - and the number of people who can do K[1]
// - the 2 sets might intersect, so it could be that both can be done, but not at the same time.
// - to fix this, we can count the number of people who can do K[0], the number of people who can do K[1], and the number of
// people who can do both
// - let the value be X, Y, and Z
// - then the condition can be rewritten as max(0, K[0] - (X - Z)) + max(0, K[1] - (Y - Z)) <= Z
// generalize:
// - First we will check the number of people who can do K[0]
// - Then we check the number of people who can do K[0] but not K[1]
// - These people also can't do K[2] and so on
// - If the number of people who can do only K[0] is >= K[0], then we don't have to care, and only solve the problem for K[1] on
// ward
// - Otherwise anyone who else can do K[0], must also be able to do K[1]
// - Which mean we can treat the rest of K[0] as K[1] as well, and solve the problem for K[1] onward
// - Note that if multiple K[i] is equal, merge them
// - So the main query become:
// - Count the number of people who can do K[i]
// - Count the number of people who can do K[i] but not K[i + 1]
// - So count A[i] <= x and B[i] >= x and B[i] <= y
// -> persistent segment tree
class persistent_segment_tree_t {
public:
persistent_segment_tree_t *left, *right;
int l, r, m;
int count;
persistent_segment_tree_t(const int& l, const int& r) : l(l), r(r), m((l + r) / 2), count(0) {
if (l != r) {
left = new persistent_segment_tree_t(l, m);
right = new persistent_segment_tree_t(m + 1, r);
}
}
persistent_segment_tree_t(const persistent_segment_tree_t* other) { *this = *other; }
persistent_segment_tree_t* update(const int& u) const {
auto new_tree = new persistent_segment_tree_t(this);
new_tree->count++;
if (l != r) {
if (m >= u) new_tree->left = left->update(u);
else new_tree->right = right->update(u);
}
return new_tree;
}
int get(const int& u, const int& v) const {
if (l > v || r < u) return u;
if (u <= l && v >= r) return count;
return left->get(u, v) + right->get(u, v);
}
};
persistent_segment_tree_t* tree[500001];
vector<pair<int, int>> s;
int n;
void init(int N, int A[], int B[]) {
n = N;
for (int i = 0; i < n; i++) s.emplace_back(A[i], B[i]);
sort(s.begin(), s.end());
tree[0] = new persistent_segment_tree_t(1, n);
for (int i = 1, j = 0; i <= n; i++) {
tree[i] = tree[i - 1];
while ((j < n) && (s[j].first <= i)) {
tree[i] = tree[i]->update(s[j].second);
j++;
}
}
}
// count the number of segment that contain x, but the right side is <= y
int count_good(int x, int y) {
int ans = 0;
for (auto&& [l, r] : s) {
ans += (l <= x) && (r >= x) && (r <= y);
}
return ans;
}
int can(int M, int K[]) {
if (accumulate(K, K + M, 0LL) > n) return 0;
sort(K, K + M);
int left_over = 0;
for (int i = 0; i < M; i++) {
int j = i;
while (((j + 1) < M) && (K[j + 1] == K[j])) j++;
if (i) left_over = max(0, left_over - count_good(K[i - 1], K[i] - 1));
left_over += (j - i + 1) * K[i];
// if (left_over > tree[K[i]]->get(K[i], 1e9)) return 0;
if (left_over > count_good(K[i], 1e9)) return 0;
i = j;
}
return 1;
}
컴파일 시 표준 에러 (stderr) 메시지
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|---|---|---|---|
Fetching results... |