#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
template<class T, int SZ> struct RMQ {
T stor[SZ][32-__builtin_clz(SZ)];
T comb(T a, T b) {
return max(a,b);
}
void build() {
FOR(j,1,32-__builtin_clz(SZ)) F0R(i,SZ-(1<<(j-1)))
stor[i][j] = comb(stor[i][j-1],
stor[i+(1<<(j-1))][j-1]);
}
T query(int l, int r) {
int x = 31-__builtin_clz(r-l+1);
return comb(stor[l][x],stor[r-(1<<x)+1][x]);
}
};
RMQ<int,MX> R;
int N,K,Q,L[MX];
pi bound[MX][17];
vi tmp[MX];
set<int> S;
pi nex(pi x, int y) {
return {min(bound[x.f][y].f,bound[x.s][y].f),
max(bound[x.f][y].s,bound[x.s][y].s)};
}
int get(vi& z, int x) {
return ub(all(z),x)-z.begin();
}
int dist(int x, int y) {
if (x == y) return 0;
int t = min(L[x],L[y]);
return get(tmp[t],y-1)-get(tmp[t],x)+1;
}
pair<int,pi> tri(int x, int y) {
int num = 0; pi cur = {x,x};
F0Rd(i,17) {
pi CUR = nex(cur,i);
if (max(L[CUR.f],L[CUR.s]) < y) {
cur = CUR;
num ^= 1<<i;
}
}
if (max(L[cur.f],L[cur.s]) < y) {
cur = nex(cur,0);
num ++;
}
return {num,cur};
}
int solve(int A, int B) {
int res = R.query(A,B);
pair<int,pi> a = tri(A,res), b = tri(B,res); // first time you to at least that level
int ans = a.f+b.f+dist(L[a.s.s] >= res ? a.s.s : a.s.f,L[b.s.f] >= res ? b.s.f : b.s.s);
/*cout << ans << " " << A << " " << B << "\n";
cout << res << " " << L[A] << " " << L[B] << "\n";
cout << a.f << " " << a.s.f << " " << a.s.s << " " << b.f << " " << b.s.f << " " << b.s.s << "\n";
cout << L[a.s.f] << " " << L[a.s.s] << " " << L[b.s.f] << " " << L[b.s.s] << "\n";*/
// cout << ans << " " << a.f << " " << a.s.f << " " << a.s.s << " " << b.f << " " << b.s.f << " " << b.s.s << "\n";
if (res != K) {
a = tri(A,res+1), b = tri(B,res+1);
if (a.s.f == b.s.f || a.s.s == b.s.s) ans = min(ans,a.f+b.f);
else ans = min(ans,a.f+b.f+1);
}
return ans;
}
void init() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N >> K >> Q;
FOR(i,1,N+1) {
cin >> L[i];
R.stor[i][0] = L[i];
tmp[L[i]].pb(i);
}
R.build();
FORd(i,1,K+1) {
sort(all(tmp[i]));
for (int j: tmp[i]) S.insert(j);
for (int j: tmp[i]) {
auto it = S.find(j);
bound[j][0].f = (it == S.begin() ? 1 : *prev(it));
bound[j][0].s = (next(it) == S.end() ? N : *next(it));
}
}
F0R(j,16) FOR(i,1,N+1) bound[i][j+1] = nex(bound[i][j],j);
}
int main() {
init();
F0R(i,Q) {
int A,B; cin >> A >> B;
if (A > B) swap(A,B);
cout << solve(A,B)-1 << "\n";
}
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
19 ms |
9336 KB |
Output is correct |
2 |
Correct |
20 ms |
9448 KB |
Output is correct |
3 |
Correct |
21 ms |
9448 KB |
Output is correct |
4 |
Correct |
25 ms |
9448 KB |
Output is correct |
5 |
Correct |
22 ms |
9448 KB |
Output is correct |
6 |
Correct |
28 ms |
9448 KB |
Output is correct |
7 |
Correct |
19 ms |
9448 KB |
Output is correct |
8 |
Correct |
18 ms |
9452 KB |
Output is correct |
9 |
Correct |
25 ms |
9476 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
22 ms |
9836 KB |
Output is correct |
2 |
Correct |
124 ms |
28432 KB |
Output is correct |
3 |
Correct |
158 ms |
28516 KB |
Output is correct |
4 |
Correct |
110 ms |
28516 KB |
Output is correct |
5 |
Correct |
176 ms |
28516 KB |
Output is correct |
6 |
Correct |
183 ms |
28516 KB |
Output is correct |
7 |
Correct |
234 ms |
29928 KB |
Output is correct |
8 |
Correct |
127 ms |
29928 KB |
Output is correct |
9 |
Correct |
142 ms |
29928 KB |
Output is correct |
10 |
Correct |
95 ms |
29928 KB |
Output is correct |
11 |
Correct |
111 ms |
29928 KB |
Output is correct |
12 |
Correct |
115 ms |
29928 KB |
Output is correct |
13 |
Correct |
133 ms |
29928 KB |
Output is correct |
14 |
Correct |
155 ms |
29928 KB |
Output is correct |
15 |
Correct |
116 ms |
29928 KB |
Output is correct |
16 |
Correct |
137 ms |
29928 KB |
Output is correct |
17 |
Correct |
92 ms |
29928 KB |
Output is correct |
18 |
Correct |
96 ms |
29928 KB |
Output is correct |
19 |
Correct |
132 ms |
30972 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
234 ms |
30972 KB |
Output is correct |
2 |
Correct |
291 ms |
30972 KB |
Output is correct |
3 |
Correct |
238 ms |
31740 KB |
Output is correct |
4 |
Correct |
228 ms |
33188 KB |
Output is correct |
5 |
Correct |
329 ms |
34632 KB |
Output is correct |
6 |
Correct |
337 ms |
36128 KB |
Output is correct |
7 |
Correct |
284 ms |
37372 KB |
Output is correct |
8 |
Correct |
284 ms |
38680 KB |
Output is correct |
9 |
Correct |
485 ms |
40256 KB |
Output is correct |
10 |
Correct |
447 ms |
41512 KB |
Output is correct |
11 |
Correct |
509 ms |
43060 KB |
Output is correct |
12 |
Correct |
541 ms |
44208 KB |
Output is correct |
13 |
Correct |
614 ms |
45552 KB |
Output is correct |
14 |
Correct |
306 ms |
46996 KB |
Output is correct |
15 |
Correct |
251 ms |
48136 KB |
Output is correct |
16 |
Correct |
322 ms |
49472 KB |
Output is correct |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
350 ms |
50932 KB |
Output is correct |
2 |
Correct |
349 ms |
52652 KB |
Output is correct |
3 |
Correct |
326 ms |
53116 KB |
Output is correct |
4 |
Correct |
249 ms |
55112 KB |
Output is correct |
5 |
Correct |
491 ms |
56176 KB |
Output is correct |
6 |
Correct |
404 ms |
58308 KB |
Output is correct |
7 |
Correct |
364 ms |
60152 KB |
Output is correct |
8 |
Correct |
321 ms |
61400 KB |
Output is correct |
9 |
Correct |
414 ms |
63588 KB |
Output is correct |
10 |
Correct |
440 ms |
65072 KB |
Output is correct |
11 |
Correct |
402 ms |
66768 KB |
Output is correct |
12 |
Correct |
464 ms |
68796 KB |
Output is correct |
13 |
Correct |
425 ms |
70452 KB |
Output is correct |
14 |
Correct |
474 ms |
72812 KB |
Output is correct |
15 |
Correct |
458 ms |
74856 KB |
Output is correct |
16 |
Correct |
354 ms |
77236 KB |
Output is correct |
17 |
Correct |
454 ms |
77740 KB |
Output is correct |
18 |
Correct |
338 ms |
79488 KB |
Output is correct |
19 |
Correct |
319 ms |
81372 KB |
Output is correct |
20 |
Correct |
267 ms |
82728 KB |
Output is correct |
21 |
Correct |
217 ms |
83572 KB |
Output is correct |
22 |
Correct |
265 ms |
85436 KB |
Output is correct |
23 |
Correct |
232 ms |
89440 KB |
Output is correct |