답안 #723201

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
723201 2023-04-13T10:31:16 Z finn__ Golf (JOI17_golf) C++17
100 / 100
6607 ms 977692 KB
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdbool.h>

#define N 100009
#define X (1 << 30)
typedef int L;

/* Range Set Point Query Segment Tree */

typedef struct Node Node;
struct Node
{
    Node *l, *r;
    L x, z;
};

void propagate(Node *node)
{
    if (!node->l)
    {
        node->l = (Node *)calloc(1, sizeof *node->l);
        node->l->x = -X, node->l->z = 0;
    }
    if (!node->r)
    {
        node->r = (Node *)calloc(1, sizeof *node->r);
        node->r->x = -X, node->r->z = 0;
    }
    if (node->z)
    {
        node->l->x = node->z;
        node->l->z = node->z;
        node->r->x = node->z;
        node->r->z = node->z;
        node->z = 0;
    }
}

void set(Node *node, L i, L j, L x, L a, L b)
{
    if (b < i || a > j)
        return;
    if (i <= a && b <= j)
        node->x = x, node->z = x;
    else
    {
        propagate(node);
        set(node->l, i, j, x, a, (a + b) / 2);
        set(node->r, i, j, x, (a + b) / 2 + 1, b);
    }
}

L query(Node *node, L i, L a, L b)
{
    if (a == b)
        return node->x;
    if (node->z)
        return node->z;
    if (i <= (a + b) / 2)
        return node->l ? query(node->l, i, a, (a + b) / 2) : -(X - 1);
    else
        return node->r ? query(node->r, i, (a + b) / 2 + 1, b) : -(X - 1);
}

void reset(Node *node)
{
    if (node->l)
        reset(node->l), free(node->l), node->l = 0;
    if (node->r)
        reset(node->r), free(node->r), node->r = 0;
}

/* Segment Tree for managing intervals */

typedef struct NodeY NodeY;
struct NodeY
{
    NodeY *l, *r;
    L a, b;
    size_t x; /* interval count in internal nodes, index in leaf nodes */
};

NodeY *insertInBetween(NodeY *node, L k, L a, L b)
{
    NodeY *z = (NodeY *)calloc(1, sizeof *z);
    z->a = a, z->b = b;
    while (1)
    {
        L const mid = (z->a + z->b) / 2;
        if (node->b <= mid && k <= mid)
            z->b = mid;
        else if (node->a > mid && k > mid)
            z->a = mid + 1;
        else
            break;
    }
    if (node->b <= (z->a + z->b) / 2)
        z->l = node;
    else
        z->r = node;
    return z;
}

void insertIntervalY(NodeY *node, L k, size_t x)
{
    if (node->a == node->b)
    {
        if (!node->x)
            node->x = x + 1; /* + 1, since 0 signifies there is no interval */
    }
    else
    {
        if (k <= (node->a + node->b) / 2)
        {
            if (!node->l)
            {
                node->l = (NodeY *)calloc(1, sizeof *node->l);
                node->l->a = node->l->b = k;
            }
            else if (!(node->l->a <= k && k <= node->l->b))
                node->l = insertInBetween(node->l, k, node->a, (node->a + node->b) / 2);
            insertIntervalY(node->l, k, x);
        }
        else
        {
            if (!node->r)
            {
                node->r = (NodeY *)calloc(1, sizeof *node->r);
                node->r->a = node->r->b = k;
            }
            else if (!(node->r->a <= k && k <= node->r->b))
                node->r = insertInBetween(node->r, k, (node->a + node->b + 1) / 2, node->b);
            insertIntervalY(node->r, k, x);
        }
        node->x = (node->l ? (node->l->a == node->l->b ? (bool)node->l->x : node->l->x) : 0) +
                  (node->r ? (node->r->a == node->r->b ? (bool)node->r->x : node->r->x) : 0);
    }
}

size_t getNextIntervalY(NodeY *node, L i, L j)
{
    if (node->b < i || node->a > j)
        return SIZE_MAX;
    if (i <= node->a && node->b <= j)
    {
        if (!node->x)
            return SIZE_MAX;
        while (node->l || node->r)
            node = (node->l && node->l->x) ? node->l : node->r;
        return node->x - 1;
    }
    else
    {
        size_t x = SIZE_MAX;
        if (node->l)
            x = getNextIntervalY(node->l, i, j);
        if (x == SIZE_MAX && node->r)
            x = getNextIntervalY(node->r, i, j);
        return x;
    }
}

void removeIntervalY(NodeY *node, L k)
{
    if (node->a == node->b)
        node->x = 0;
    else
    {
        --node->x;
        if (k <= (node->a + node->b) / 2)
            removeIntervalY(node->l, k);
        else
            removeIntervalY(node->r, k);
    }
}

typedef struct NodeX NodeX;
struct NodeX
{
    NodeX *l, *r;
    NodeY *y;
};

void insertIntervalX(NodeX *node, L i, L j, L k, size_t x, L a, L b)
{
    if (i <= a && b <= j)
    {
        if (!node->y)
        {
            node->y = (NodeY *)calloc(1, sizeof *node->y);
            node->y->a = 0;
            node->y->b = X - 1;
        }
        insertIntervalY(node->y, k, x);
    }
    else
    {
        if (i <= (a + b) / 2)
        {
            if (!node->l)
                node->l = (NodeX *)calloc(1, sizeof *node->l);
            insertIntervalX(node->l, i, j, k, x, a, (a + b) / 2);
        }
        if (j >= (a + b) / 2 + 1)
        {
            if (!node->r)
                node->r = (NodeX *)calloc(1, sizeof *node->r);
            insertIntervalX(node->r, i, j, k, x, (a + b) / 2 + 1, b);
        }
    }
}

size_t getNextIntervalX(NodeX *node, L i, L j, L k, L a, L b)
{
    size_t x = node->y ? getNextIntervalY(node->y, i, j) : SIZE_MAX;
    if (x != SIZE_MAX || a == b)
        return x;
    if (k <= (a + b) / 2)
        return node->l ? getNextIntervalX(node->l, i, j, k, a, (a + b) / 2) : SIZE_MAX;
    return node->r ? getNextIntervalX(node->r, i, j, k, (a + b) / 2 + 1, b) : SIZE_MAX;
}

void removeIntervalX(NodeX *node, L i, L j, L k, L a, L b)
{
    if (i <= a && b <= j)
        removeIntervalY(node->y, k);
    else
    {
        if (i <= (a + b) / 2)
            removeIntervalX(node->l, i, j, k, a, (a + b) / 2);
        if (j >= (a + b) / 2 + 1)
            removeIntervalX(node->r, i, j, k, (a + b) / 2 + 1, b);
    }
}

size_t min(size_t x, size_t y) { return x < y ? x : y; }
L max(L x, L y) { return x > y ? x : y; }

int cmp0(void const *a, void const *b) { return *(L *)a - *(L *)b; }
int cmp1(void const *a, void const *b) { return *((L *)a + 1) - *((L *)b + 1); }
int cmp2(void const *a, void const *b) { return *((L *)a + 2) - *((L *)b + 2); }
int cmp3(void const *a, void const *b) { return *((L *)a + 3) - *((L *)b + 3); }
int cmp4(void const *a, void const *b) { return *((L *)a + 4) - *((L *)b + 4); }

L r[N][5], (*s)[4], t[4 * N][2];
uint32_t queue[4 * N], distance[4 * N];
Node root;
NodeX horizontal, vertical;

int main()
{
    L S, T, U, V;
    size_t n;
    scanf("%d %d %d %d %zu", &S, &T, &U, &V, &n);
    s = (L(*)[4])malloc(N * sizeof *s);
    for (size_t i = 0; i < n; i++)
    {
        scanf("%d %d %d %d", r[i], r[i] + 1, r[i] + 2, r[i] + 3);
        s[i][0] = r[i][0];
        s[i][1] = r[i][1];
        s[i][2] = r[i][2];
        s[i][3] = r[i][3];
        r[i][4] = i;
    }

    /* Start and end point are rectangles with 0 area */

    r[n][0] = r[n][1] = s[n][0] = s[n][1] = S;
    r[n][2] = r[n][3] = s[n][2] = s[n][3] = T;
    r[n][4] = n;
    ++n;
    r[n][0] = r[n][1] = s[n][0] = s[n][1] = U;
    r[n][2] = r[n][3] = s[n][2] = s[n][3] = V;
    r[n][4] = n;
    ++n;

    /* Sweep x ascending */

    qsort(r, n, sizeof *r, cmp0);
    qsort(s, n, sizeof *s, cmp1);
    root.x = root.z = -(X - 1);
    size_t i = 0, j = 0;

    while (i < n)
    {
        while (j < n && r[i][0] >= s[j][1])
        {
            if (s[j][2] + 1 <= s[j][3] - 1)
                set(&root, s[j][2] + 1, s[j][3] - 1, s[j][1], 0, X - 1);
            ++j;
        }
        t[4 * r[i][4]][0] = max(0, query(&root, r[i][2], 0, X - 1));
        t[4 * r[i][4] + 1][0] = max(0, query(&root, r[i][3], 0, X - 1));
        ++i;
    }

    /* Sweep x descending */

    for (size_t i = 0; i < n; i++)
        r[i][0] *= -1, r[i][1] *= -1, s[i][0] *= -1, s[i][1] *= -1;
    qsort(r, n, sizeof *r, cmp1);
    qsort(s, n, sizeof *s, cmp0);
    reset(&root);
    root.x = root.z = -(X - 1);
    i = j = 0;

    while (i < n)
    {
        while (j < n && r[i][1] >= s[j][0])
        {
            if (s[j][2] + 1 <= s[j][3] - 1)
                set(&root, s[j][2] + 1, s[j][3] - 1, s[j][0], 0, X - 1);
            ++j;
        }
        t[4 * r[i][4]][1] = -query(&root, r[i][2], 0, X - 1);
        t[4 * r[i][4] + 1][1] = -query(&root, r[i][3], 0, X - 1);
        ++i;
    }

    for (size_t i = 0; i < n; i++)
        r[i][0] *= -1, r[i][1] *= -1, s[i][0] *= -1, s[i][1] *= -1;

    /* Sweep y ascending */

    qsort(r, n, sizeof *r, cmp2);
    qsort(s, n, sizeof *s, cmp3);
    reset(&root);
    root.x = root.z = -(X - 1);
    i = j = 0;

    while (i < n)
    {
        while (j < n && r[i][2] >= s[j][3])
        {
            if (s[j][0] + 1 <= s[j][1] - 1)
                set(&root, s[j][0] + 1, s[j][1] - 1, s[j][3], 0, X - 1);
            ++j;
        }
        t[4 * r[i][4] + 2][0] = max(0, query(&root, r[i][0], 0, X - 1));
        t[4 * r[i][4] + 3][0] = max(0, query(&root, r[i][1], 0, X - 1));
        ++i;
    }

    /* Sweep y descending */

    for (size_t i = 0; i < n; i++)
        r[i][2] *= -1, r[i][3] *= -1, s[i][2] *= -1, s[i][3] *= -1;
    qsort(r, n, sizeof *r, cmp3);
    qsort(s, n, sizeof *s, cmp2);
    reset(&root);
    root.x = root.z = -(X - 1);
    i = j = 0;

    while (i < n)
    {
        while (j < n && r[i][3] >= s[j][2])
        {
            if (s[j][0] + 1 <= s[j][1] - 1)
                set(&root, s[j][0] + 1, s[j][1] - 1, s[j][2], 0, X - 1);
            ++j;
        }
        t[4 * r[i][4] + 2][1] = -query(&root, r[i][0], 0, X - 1);
        t[4 * r[i][4] + 3][1] = -query(&root, r[i][1], 0, X - 1);
        ++i;
    }

    for (size_t i = 0; i < n; i++)
        r[i][2] *= -1, r[i][3] *= -1, s[i][2] *= -1, s[i][3] *= -1;

    /* Be patient, the real algorithm starts now... */

    if ((S == U && t[4 * (n - 2) + 1][0] <= V && V <= t[4 * (n - 2) + 1][1]) ||
        (T == V && t[4 * (n - 2)][0] <= U && U <= t[4 * (n - 2)][1]))
    {
        printf("1\n");
        return 0;
    }

    free(s);
    reset(&root);
    qsort(r, n, sizeof *r, cmp4);

    insertIntervalX(&horizontal, t[4 * (n - 1)][0], t[4 * (n - 1)][1],
                    V, 4 * (n - 1), 0, X - 1);
    insertIntervalX(&vertical, t[4 * (n - 1) + 2][0], t[4 * (n - 1) + 2][1],
                    U, 4 * (n - 1) + 2, 0, X - 1);
    for (size_t i = 0; i < 4 * (n - 2); i++)
    {
        if ((i & 3) < 2)
            insertIntervalX(&horizontal, t[i][0], t[i][1],
                            r[i >> 2][(i + 2) & 3], i, 0, X - 1);
        else
            insertIntervalX(&vertical, t[i][0], t[i][1],
                            r[i >> 2][(i + 2) & 3], i, 0, X - 1);
    }

    i = j = 0;
    queue[j++] = 4 * (n - 2);
    queue[j++] = 4 * (n - 2) + 2;
    distance[4 * (n - 2)] = distance[4 * (n - 2) + 2] = 1;

    while (i < j)
    {
        size_t const u = queue[i++];

        size_t v = getNextIntervalX((u & 3) < 2 ? &vertical : &horizontal,
                                    t[u][0], t[u][1], r[u >> 2][(u + 2) & 3], 0, X - 1);
        while (v != SIZE_MAX)
        {
            distance[v] = distance[u] + 1;
            if (v == 4 * (n - 1) || v == 4 * (n - 1) + 2)
            {
                printf("%" PRIu32 "\n", distance[v]);
                return 0;
            }
            queue[j++] = v;
            removeIntervalX((v & 3) < 2 ? &horizontal : &vertical,
                            t[v][0], t[v][1], r[v >> 2][(v + 2) & 3], 0, X - 1);
            v = getNextIntervalX((u & 3) < 2 ? &vertical : &horizontal,
                                 t[u][0], t[u][1], r[u >> 2][(u + 2) & 3], 0, X - 1);
        }
    }
}

Compilation message

golf.cpp: In function 'int main()':
golf.cpp:258:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  258 |     scanf("%d %d %d %d %zu", &S, &T, &U, &V, &n);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
golf.cpp:262:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  262 |         scanf("%d %d %d %d", r[i], r[i] + 1, r[i] + 2, r[i] + 3);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 336 KB Output is correct
2 Correct 1 ms 336 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 2 ms 592 KB Output is correct
5 Correct 11 ms 2244 KB Output is correct
6 Correct 10 ms 2276 KB Output is correct
7 Correct 13 ms 2116 KB Output is correct
8 Correct 12 ms 2236 KB Output is correct
9 Correct 12 ms 2308 KB Output is correct
10 Correct 10 ms 2244 KB Output is correct
11 Correct 10 ms 2244 KB Output is correct
12 Correct 9 ms 2232 KB Output is correct
13 Correct 12 ms 2208 KB Output is correct
14 Correct 16 ms 2116 KB Output is correct
15 Correct 4 ms 1036 KB Output is correct
16 Correct 8 ms 1764 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 336 KB Output is correct
2 Correct 1 ms 336 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 2 ms 592 KB Output is correct
5 Correct 11 ms 2244 KB Output is correct
6 Correct 10 ms 2276 KB Output is correct
7 Correct 13 ms 2116 KB Output is correct
8 Correct 12 ms 2236 KB Output is correct
9 Correct 12 ms 2308 KB Output is correct
10 Correct 10 ms 2244 KB Output is correct
11 Correct 10 ms 2244 KB Output is correct
12 Correct 9 ms 2232 KB Output is correct
13 Correct 12 ms 2208 KB Output is correct
14 Correct 16 ms 2116 KB Output is correct
15 Correct 4 ms 1036 KB Output is correct
16 Correct 8 ms 1764 KB Output is correct
17 Correct 46 ms 11200 KB Output is correct
18 Correct 38 ms 11324 KB Output is correct
19 Correct 42 ms 11328 KB Output is correct
20 Correct 42 ms 11308 KB Output is correct
21 Correct 40 ms 11536 KB Output is correct
22 Correct 40 ms 11412 KB Output is correct
23 Correct 39 ms 11332 KB Output is correct
24 Correct 43 ms 11312 KB Output is correct
25 Correct 34 ms 11324 KB Output is correct
26 Correct 42 ms 11376 KB Output is correct
27 Correct 12 ms 4012 KB Output is correct
28 Correct 21 ms 7108 KB Output is correct
29 Correct 22 ms 7020 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 1 ms 336 KB Output is correct
2 Correct 1 ms 336 KB Output is correct
3 Correct 1 ms 336 KB Output is correct
4 Correct 2 ms 592 KB Output is correct
5 Correct 11 ms 2244 KB Output is correct
6 Correct 10 ms 2276 KB Output is correct
7 Correct 13 ms 2116 KB Output is correct
8 Correct 12 ms 2236 KB Output is correct
9 Correct 12 ms 2308 KB Output is correct
10 Correct 10 ms 2244 KB Output is correct
11 Correct 10 ms 2244 KB Output is correct
12 Correct 9 ms 2232 KB Output is correct
13 Correct 12 ms 2208 KB Output is correct
14 Correct 16 ms 2116 KB Output is correct
15 Correct 4 ms 1036 KB Output is correct
16 Correct 8 ms 1764 KB Output is correct
17 Correct 46 ms 11200 KB Output is correct
18 Correct 38 ms 11324 KB Output is correct
19 Correct 42 ms 11328 KB Output is correct
20 Correct 42 ms 11308 KB Output is correct
21 Correct 40 ms 11536 KB Output is correct
22 Correct 40 ms 11412 KB Output is correct
23 Correct 39 ms 11332 KB Output is correct
24 Correct 43 ms 11312 KB Output is correct
25 Correct 34 ms 11324 KB Output is correct
26 Correct 42 ms 11376 KB Output is correct
27 Correct 12 ms 4012 KB Output is correct
28 Correct 21 ms 7108 KB Output is correct
29 Correct 22 ms 7020 KB Output is correct
30 Correct 4785 ms 947548 KB Output is correct
31 Correct 5361 ms 955428 KB Output is correct
32 Correct 6233 ms 949652 KB Output is correct
33 Correct 6562 ms 957096 KB Output is correct
34 Correct 5145 ms 977692 KB Output is correct
35 Correct 6607 ms 972560 KB Output is correct
36 Correct 4657 ms 963944 KB Output is correct
37 Correct 5773 ms 954376 KB Output is correct
38 Correct 5203 ms 972500 KB Output is correct
39 Correct 6113 ms 956720 KB Output is correct
40 Correct 402 ms 48004 KB Output is correct
41 Correct 391 ms 47552 KB Output is correct
42 Correct 373 ms 47904 KB Output is correct
43 Correct 433 ms 48168 KB Output is correct
44 Correct 394 ms 48684 KB Output is correct
45 Correct 413 ms 49076 KB Output is correct
46 Correct 490 ms 49060 KB Output is correct
47 Correct 369 ms 48512 KB Output is correct
48 Correct 426 ms 48708 KB Output is correct
49 Correct 381 ms 48452 KB Output is correct
50 Correct 20 ms 6688 KB Output is correct
51 Correct 24 ms 6980 KB Output is correct
52 Correct 22 ms 6940 KB Output is correct