#include <bits/stdc++.h>
#define rf(x) (x)=0;while(*p<48)p++;while(47<*p)(x)=((x)<<3)+((x)<<1)+(*p++&15);
//#define rf(x) (x)=0;while(*p<48)im=*p=='-';while(47<*p)(x)=((x)<<3)+((x)<<1)+(*p++&15);if(im)(x)=-(x);
#define pb push_back
#define eb emplace_back
#define sz(V) ((int)(V).size())
#define allv(V) ((V).begin()),((V).end())
#define befv(V) ((V)[(sz(V)-2)])
#define sorv(V) sort(allv(V))
#define revv(V) reverse(allv(V))
#define univ(V) (V).erase(unique(allv(V)),(V).end())
#define clv(V) (V).clear()
#define upmin(a,b) (a)=min((a),(b))
#define upmax(a,b) (a)=max((a),(b))
#define rb(x) ((x)&(-(x)))
#define cb(x) (x)=(!(x))
#define INF (0x3f3f3f3f)
#define INFLL (0x3f3f3f3f3f3f3f3fll)
#define INFST (0x7f7f7f7f)
#define INFLLST (0x7f7f7f7f7f7f7f7fll)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<int, ll> pil;
typedef pair<ll, int> pli;
typedef pair<ld, ld> pdd;
typedef complex<ld> base;
const ld EPS = (ld)1e-7;
const ld PI = acos(0) * 2;
bool isZero(const ld& x) { return abs(x) <= EPS; }
int sign(const ld& x) { return isZero(x) ? 0 : (0 < x ? 1 : -1); }
ll gcd(ll a, ll b) { for(;b;a%=b,swap(a,b)){} return abs(a); }
pll operator + (const pll& a, const pll& b) { return pll(a.first+b.first, a.second+b.second); }
pll operator - (const pll& a, const pll& b) { return pll(a.first-b.first, a.second-b.second); }
pll operator * (const pll& a, const ll& b) { return pll(a.first*b, a.second*b); }
ll operator * (const pll& a, const pll& b) { return a.first*b.second - b.first*a.second; }
ll ccw(const pll& a, const pll& b, const pll& c) { return a*b + b*c + c*a; }
void fg(vector<int> G[], int a, int b) { G[a].pb(b); G[b].pb(a); }
void fg(vector<pii> G[], int a, int b, int c) { G[a].pb({b, c}); G[b].pb({a, c}); }
const int MAXN = 300005;
inline void answer(ll x, ll y) {
ll t = gcd(x, y);
if(t) { x /= t; y /= t; }
printf("%lld/%lld\n", y, x);
exit(0);
}
struct NOD {
NOD() : l(NULL), r(NULL) {}
NOD *l, *r;
ll x, y;
pll f() { return pll(x, y); }
} *rt;
struct LNE {
LNE(ll dx, ll dy, NOD *p) : dx(dx), dy(dy), p(p) {}
ll dx, dy;
NOD *p;
bool operator < (const LNE &t) const {
return dy * t.dx < dx * t.dy;
}
};
priority_queue<LNE> PQ;
ll X[MAXN], Y[MAXN];
int N; ll C;
int main() {
ios::sync_with_stdio(false);
rt = new NOD();
{
NOD *p = rt;
cin >> N >> C; C <<= 1;
for(int i = 1; i <= N; i++) cin >> X[i];
for(int i = 1; i <= N; i++) cin >> Y[i];
for(int i = 1; i <= N; i++) {
ll x = X[i], y = Y[i];
NOD *t = new NOD();
t -> x = x; t -> y = y;
p -> r = t;
t -> l = p;
p = t;
}
}
{
NOD *p = rt -> r;
for(;;) {
if(!(p -> r)) break;
PQ.push(LNE((p -> r -> x) - (p -> x), (p -> r -> y) - (p -> y), p));
p = p -> r;
}
}
for(; !PQ.empty() && 0 < C;) {
NOD *p = PQ.top().p;
ll dx = PQ.top().dx, dy = PQ.top().dy;
PQ.pop();
if(p -> l == rt) answer(dx, dy);
ll area = abs(ccw(p -> l -> f(), p -> f(), p -> r -> f()));
if(C < area) answer(dx, dy);
C -= area;
p -> r -> l = p -> l;
p -> l -> r = p -> r;
dx = (p -> r -> x) - (p -> l -> x);
dy = (p -> r -> y) - (p -> l -> y);
PQ.push(LNE(dx, dy, p -> l));
}
answer(PQ.top().dx, PQ.top().dy);
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
376 KB |
Output is correct |
2 |
Correct |
2 ms |
496 KB |
Output is correct |
3 |
Correct |
2 ms |
788 KB |
Output is correct |
4 |
Incorrect |
3 ms |
788 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
3 ms |
376 KB |
Output is correct |
2 |
Correct |
2 ms |
496 KB |
Output is correct |
3 |
Correct |
2 ms |
788 KB |
Output is correct |
4 |
Incorrect |
3 ms |
788 KB |
Output isn't correct |
5 |
Halted |
0 ms |
0 KB |
- |