Submission #715900

# Submission time Handle Problem Language Result Execution time Memory
715900 2023-03-28T11:32:51 Z pavement Harvest (JOI20_harvest) C++17
20 / 100
1942 ms 154708 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;
#define int long long
#define mp make_pair
#define mt make_tuple
#define pb push_back
#define ppb pop_back
#define eb emplace_back
#define g0(a) get<0>(a)
#define g1(a) get<1>(a)
#define g2(a) get<2>(a)
#define g3(a) get<3>(a)
#define g4(a) get<4>(a)
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
using db = double;
using ll = long long;
using ld = long double;
using ii = pair<int, int>;
using iii = tuple<int, int, int>;
using iiii = tuple<int, int, int, int>;
using iiiii = tuple<int, int, int, int, int>;
template<class key, class value = null_type, class cmp = less<key> >
using ordered_set = tree<key, value, cmp, rb_tree_tag, tree_order_statistics_node_update>;

int N, M, L, C, Q, root, A[200005], B[200005], off[200005], lnk[200005], sz[200005], ans[200005];
bool on_cycle[200005];
ii to[200005];
vector<int> S[200005];
vector<ii> adj[200005], qu[200005];

int find(int x) {
	if (x == lnk[x]) return x;
	return lnk[x] = find(lnk[x]);
}

void unite(int a, int b) {
	a = find(a);
	b = find(b);
	if (a == b) return;
	if (sz[b] > sz[a]) swap(a, b);
	sz[a] += sz[b];
	lnk[b] = a;
}

template <class T>
struct wavelet_matrix {
    using size_type = uint32_t;
    struct bit_vector {
        static constexpr size_type wsize = 64;
        static size_type rank64(uint64_t x, size_type i) {
            return __builtin_popcountll(x & ((1ULL << i) - 1));
        }
#pragma pack(4)
        struct block_t {
            uint64_t bit;
            size_type sum;
        };
#pragma pack()
        size_type n, zeros;
        vector<block_t> block;
        bit_vector(size_type _n = 0) : n(_n), block(n / wsize + 1) {}
        int operator[](size_type i) const {
            return block[i / wsize].bit >> i % wsize & 1;
        }
        void set(size_type i) {
            block[i / wsize].bit |= (uint64_t)1 << i % wsize;
        }
        void build() {
            for (size_type j = 0; j < n / wsize; ++j)
                block[j + 1].sum =
                    block[j].sum + __builtin_popcountll(block[j].bit);
            zeros = rank0(n);
        }
        size_type rank0(size_type i) const { return i - rank1(i); }
        size_type rank1(size_type i) const {
            auto&& e = block[i / wsize];
            return e.sum + rank64(e.bit, i % wsize);
        }
    };
    size_type n, lg;
    vector<T> a;
    vector<bit_vector> bv;
    wavelet_matrix(size_type _n = 0) : n(_n), a(n) {}
    wavelet_matrix(const vector<T>& _a) : n(_a.size()), a(_a) { build(); }
    T& operator[](size_type i) { return a[i]; }
    void build() {
        lg = __lg(max<T>(
                 *max_element(begin(a), end(a)), 1)) +
             1;
        bv.assign(lg, n);
        vector<T> cur = a, nxt(n);
        for (auto h = lg; h--;) {
            for (size_type i = 0; i < n; ++i)
                if (cur[i] >> h & 1) bv[h].set(i);
            bv[h].build();
            array it{begin(nxt), begin(nxt) + bv[h].zeros};
            for (size_type i = 0; i < n; ++i) *it[bv[h][i]]++ = cur[i];
            swap(cur, nxt);
        }
    }
    // find kth element in [l, r), 0 indexed
    T kth(size_type l, size_type r, size_type k) const {
        T res = 0;
        for (auto h = lg; h--;) {
            auto l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
            if (k < r0 - l0)
                l = l0, r = r0;
            else {
                k -= r0 - l0;
                res |= (T)1 << h;
                l += bv[h].zeros - l0;
                r += bv[h].zeros - r0;
            }
        }
        return res;
    }
    // count i in [l..r) satisfying a[i] < ub
    size_type count(size_type l, size_type r, T ub) const {
        if (ub >= (T)1 << lg) return r - l;
        size_type res = 0;
        for (auto h = lg; h--;) {
            auto l0 = bv[h].rank0(l), r0 = bv[h].rank0(r);
            if (~ub >> h & 1)
                l = l0, r = r0;
            else {
                res += r0 - l0;
                l += bv[h].zeros - l0;
                r += bv[h].zeros - r0;
            }
        }
        return res;
    }
    size_type count(size_type l, size_type r, T lb, T ub) const {
        return count(l, r, ub) - count(l, r, lb);
    }
};

template <class T>
auto zip(const vector<T>& a) {
    int n = size(a);
    vector<pair<T, int>> p(n);
    for (int i = 0; i < n; ++i) p[i] = {a[i], i};
    sort(begin(p), end(p));
    vector<int> na(n);
    vector<T> v;
    for (int k = 0, rnk = -1; k < n; ++k) {
        if (k == 0 or p[k - 1].first < p[k].first)
            v.push_back(p[k].first), ++rnk;
        na[p[k].second] = rnk;
    }
    return make_pair(na, v);
}

vector<int> wav;
vector<iiii> to_qry;

void solve_tree(int n, int d) {
	assert(!on_cycle[n]);
	int lb = (int)wav.size();
	for (auto v : S[n]) {
		wav.pb(v + d);
		S[root].pb(v + d);
	}
	for (auto [u, w] : adj[n]) {
		solve_tree(u, d + w);
	}
	for (auto [v, idx] : qu[n]) {
		to_qry.eb(lb, (int)wav.size(), v + d + 1, idx);
	}
}

vector<iii> adds[400005], qus[400005];
stack<int> updated;

int ft[400005];

int ls(int x) { return x & -x; }

int ft_qry(int p) {
	int r = 0;
	for (; p; p -= ls(p)) r += ft[p];
	return r;
}

void ft_upd(int p, int sz) {
	for (; p <= sz; p += ls(p)) {
		updated.push(p);
		ft[p]++;
	}
}

void ft_reset() {
	while (!updated.empty()) {
		int cur = updated.top();
		ft[cur] = 0;
		updated.pop();
	}
}

void cdq(int l, int r) {
	if (l == r) return;
	int m = (l + r) / 2;
	vector<iii> sort_by;
	for (int i = l; i <= m; i++) {
		for (auto [a, q, r] : adds[i]) {
			sort_by.eb(a, q, r);
		}
	}
	for (int i = m + 1; i <= r; i++) {
		for (auto [b, r, idx] : qus[i]) {
			sort_by.eb(b, r, -idx);
		}
	}
	int pf = 0;
	ordered_set<ii> O;
	sort(sort_by.begin(), sort_by.end(), [](const auto &lhs, const auto &rhs) {
		if (g0(lhs) != g0(rhs)) return lhs < rhs;
		else if ((g2(lhs) >= 0) != (g2(rhs) >= 0)) return g2(lhs) > g2(rhs);
		else return lhs < rhs;
	});
	vector<int> disc;
	for (auto [a, b, c] : sort_by) {
		if (c < 0) disc.pb(b);
		else disc.pb(c);
	}
	sort(disc.begin(), disc.end());
	disc.erase(unique(disc.begin(), disc.end()), disc.end());
	ft_reset();
	for (auto [a, b, c] : sort_by) {
		if (c < 0) {
			b = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
			ans[-c] -= ft_qry(b) + pf;
		} else {
			pf += b;
			c = lower_bound(disc.begin(), disc.end(), c) - disc.begin() + 1;
			ft_upd(c, (int)disc.size());
		}
	}
	cdq(l, m);
	cdq(m + 1, r);
}

main() {
	ios::sync_with_stdio(0);
	cin.tie(0);
	cin >> N >> M >> L >> C;
	for (int i = 1; i <= N; i++) {
		cin >> A[i];
		lnk[i] = i;
		sz[i] = 1;
	}
	for (int i = 1; i <= N; i++) {
		int pos = ((A[i] - C) % L + L) % L;
		auto it = upper_bound(A + 1, A + 1 + N, pos);
		if (it == A + 1) {
			to[i] = mp(N, pos + L - A[N] + C);
		} else {
			--it;
			to[i] = mp(it - A, pos - *it + C);
		}
		unite(i, to[i].first);
		adj[to[i].first].eb(i, to[i].second);
	}
	for (int i = 1; i <= M; i++) {
		cin >> B[i];
		auto it = lower_bound(A + 1, A + 1 + N, B[i]);
		if (it == A + 1) {
			S[N].pb(B[i] + L - A[N]);
		} else {
			--it;
			S[it - A].pb(B[i] - *it);
		}
	}
	cin >> Q;
	for (int i = 1, V, T; i <= Q; i++) {
		cin >> V >> T;
		qu[V].eb(T, i);
	}
	// handle nodes not on cycle
	for (int i = 1; i <= N; i++) {
		if (i == find(i)) {
			int tort = i, hare = i;
			do {
				hare = to[to[hare].first].first;
				tort = to[tort].first;
			} while (tort != hare);
			do {
				on_cycle[tort] = 1;
				tort = to[tort].first;
			} while (tort != hare);
		}
	}
	for (int i = 1; i <= N; i++) {
		if (on_cycle[i]) {
			root = i;
			wav.clear();
			to_qry.clear();
			for (auto [u, w] : adj[i]) if (!on_cycle[u]) {
				solve_tree(u, w);
			}
			if (wav.empty()) continue;
			auto [na, v] = zip(wav);
			wavelet_matrix wm(na);
			for (auto [l, r, k, idx] : to_qry) {
				if (l < r) {
					ans[idx] += wm.count(l, r, upper_bound(v.begin(), v.end(), k) - v.begin());
				}
			}
		}
	}
	// handle nodes on cycle
	for (int i = 1; i <= N; i++) {
		if (i == find(i)) {
			int tort = i, hare = i;
			do {
				hare = to[to[hare].first].first;
				tort = to[tort].first;
			} while (tort != hare);
			vector<int> ord;
			int len = 0;
			do {
				ord.pb(tort);
				len += to[tort].second;
				tort = to[tort].first;
			} while (tort != hare);
			int P = 0, cnt = 0;
			vector<int> disc;
			ft_reset();
			qus[0].clear();
			for (auto x : ord) {
				adds[cnt].clear();
				for (auto v : S[x]) {
					int a = v + off[x] - P;
					int q2 = a / len, r2 = a % len;
					if (r2 < 0) {
						r2 += len;
						q2--;
					}
					adds[cnt].eb(a, q2, len - r2);
					disc.pb(a);
				}
				qus[cnt + 1].clear();
				for (auto [t, idx] : qu[x]) {
					int b = t - P + len;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					qus[cnt + 1].eb(b, len - r1 - 1, idx);
					disc.pb(b);
				}
				P += to[x].second;
				cnt++;
			}
			P = 0;
			sort(disc.begin(), disc.end());
			disc.erase(unique(disc.begin(), disc.end()), disc.end());
			for (auto x : ord) {
				for (auto v : S[x]) {
					int a = v + off[x] - P;
					int da = lower_bound(disc.begin(), disc.end(), a) - disc.begin() + 1;
					ft_upd(da, (int)disc.size());
				}
				for (auto [t, idx] : qu[x]) {
					int b = t - P + len;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					int db = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
					ans[idx] += q1 * ft_qry(db);
				}
				P += to[x].second;
			}
			adds[cnt].clear();
			cnt++;
			if (cnt) cdq(0, cnt - 1);
			reverse(ord.begin(), ord.end());
			P = cnt = 0;
			disc.clear();
			ft_reset();
			for (auto x : ord) {
				adds[cnt].clear();
				qus[cnt].clear();
				P += to[x].second;
				for (auto v : S[x]) {
					int a = v + off[x] + P;
					int q2 = a / len, r2 = a % len;
					if (r2 < 0) {
						r2 += len;
						q2--;
					}
					disc.pb(a);
					adds[cnt].eb(a, q2, len - r2);
				}
				for (auto [t, idx] : qu[x]) {
					int b = t + P;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					qus[cnt].eb(b, len - r1 - 1, idx);
					disc.pb(b);
				}
				cnt++;
			}
			P = 0;
			sort(disc.begin(), disc.end());
			disc.erase(unique(disc.begin(), disc.end()), disc.end());
			for (auto x : ord) {
				P += to[x].second;
				for (auto [t, idx] : qu[x]) {
					int b = t + P;
					int q1 = b / len, r1 = b % len;
					if (r1 < 0) {
						r1 += len;
						q1--;
					}
					int db = lower_bound(disc.begin(), disc.end(), b) - disc.begin() + 1;
					ans[idx] += q1 * ft_qry(db);
				}
				for (auto v : S[x]) {
					int a = v + off[x] + P;
					int da = lower_bound(disc.begin(), disc.end(), a) - disc.begin() + 1;
					ft_upd(da, (int)disc.size());
				}
			}
			if (cnt) cdq(0, cnt - 1);
		}
	}
	for (int i = 1; i <= Q; i++) {
		cout << ans[i] << '\n';
	}
}

Compilation message

harvest.cpp:246:1: warning: ISO C++ forbids declaration of 'main' with no type [-Wreturn-type]
  246 | main() {
      | ^~~~
# Verdict Execution time Memory Grader output
1 Correct 20 ms 33608 KB Output is correct
2 Correct 26 ms 33656 KB Output is correct
3 Correct 26 ms 34272 KB Output is correct
4 Correct 27 ms 34480 KB Output is correct
5 Incorrect 25 ms 34732 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 259 ms 60288 KB Output is correct
2 Correct 226 ms 58272 KB Output is correct
3 Correct 232 ms 54892 KB Output is correct
4 Correct 336 ms 74392 KB Output is correct
5 Correct 241 ms 87028 KB Output is correct
6 Correct 211 ms 87056 KB Output is correct
7 Correct 166 ms 58296 KB Output is correct
8 Correct 153 ms 58348 KB Output is correct
9 Correct 1028 ms 76228 KB Output is correct
10 Correct 1942 ms 154708 KB Output is correct
11 Correct 1109 ms 76104 KB Output is correct
12 Correct 1156 ms 76208 KB Output is correct
13 Correct 1132 ms 76196 KB Output is correct
14 Correct 1479 ms 128732 KB Output is correct
15 Correct 948 ms 67700 KB Output is correct
16 Correct 207 ms 74472 KB Output is correct
17 Correct 190 ms 74272 KB Output is correct
18 Correct 138 ms 53804 KB Output is correct
19 Correct 138 ms 53840 KB Output is correct
20 Correct 174 ms 58912 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 20 ms 33608 KB Output is correct
2 Correct 26 ms 33656 KB Output is correct
3 Correct 26 ms 34272 KB Output is correct
4 Correct 27 ms 34480 KB Output is correct
5 Incorrect 25 ms 34732 KB Output isn't correct
6 Halted 0 ms 0 KB -