답안 #711183

# 제출 시각 아이디 문제 언어 결과 실행 시간 메모리
711183 2023-03-16T09:31:30 Z pls33 Fireworks (APIO16_fireworks) C++17
55 / 100
2000 ms 27828 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>

using namespace std;
using namespace __gnu_pbds;

#pragma region dalykai
using p32 = pair<int, int>;
using p32u = pair<uint32_t, uint32_t>;
using p64 = pair<int64_t, int64_t>;
using p64u = pair<uint64_t, uint64_t>;
using vi16 = vector<int16_t>;
using vi16u = vector<uint16_t>;
using vi32 = vector<int>;
using vi32u = vector<uint32_t>;
using vi64 = vector<int64_t>;
using vi64u = vector<uint64_t>;
using vp32 = vector<p32>;
using vp32u = vector<p32u>;
using vp64 = vector<p64>;
using vp64u = vector<p64u>;
using vvi32 = vector<vi32>;
using vvi32u = vector<vi32u>;
using vvi64 = vector<vi64>;
using vvi64u = vector<vi64u>;
using vvp32 = vector<vp32>;
using vvp32u = vector<vp32u>;
using vvp64 = vector<vp64>;
using vvp64u = vector<vp64u>;
using f80 = long double;
#pragma endregion

/*
 * Author: Seokhwan Choi
 * Time Complexity: O((N+M) (log (N+M))^2 )
 */

#include <stdio.h>
#include <queue>
#define MAXN 300100
int n, m;
int p[MAXN];
int c[MAXN];
struct ndata
{                       // contains data for subtree (y=f(x), where y is minimum cost when distance to all leaf node is x
    long long int a, b; // y=ax+b at large x
    vi64 *pq;           // saves slope changing points, slope change by 1 at each element
    ndata operator+(ndata r)
    {            // merge two data by adding them
        ndata s; // result(merged data)
        s.a = a + r.a;
        s.b = b + r.b;
        if (pq->size() > r.pq->size())
        { // merge smaller priority queue to larger priority queue
            s.pq = pq;

            s.pq->insert(s.pq->end(), r.pq->begin(), r.pq->end());
            make_heap(s.pq->begin(), s.pq->end());
            // r.pq->clear();
        }
        else
        {
            s.pq = r.pq;

            s.pq->insert(s.pq->end(), pq->begin(), pq->end());
            make_heap(s.pq->begin(), s.pq->end());
            // pq->clear();
        }
        return s;
    }

    int64_t top()
    {
        return pq->front();
    }

    void pop()
    {
        pop_heap(pq->begin(), pq->end());
        pq->pop_back();
    }

    void push(int64_t val)
    {
        pq->push_back(val);
        push_heap(pq->begin(), pq->end());
    }
};
ndata d[MAXN];
int main()
{
#ifndef _AAAAAAAAA
    ios_base::sync_with_stdio(false);
    cin.tie(0);
#else
    freopen("fireworks.in", "r", stdin);
#ifndef __linux__
    atexit([]()
           {
        freopen("con", "r", stdin);
        system("pause"); });
#endif
#endif

    int i;
    scanf("%d%d", &n, &m);
    for (i = 2; i <= n + m; i++)
    {
        scanf("%d%d", &p[i], &c[i]);
    }
    for (i = n + m; i > 0; i--)
    { // initiallize
        d[i].a = 0;
        d[i].b = 0;
        d[i].pq = new vi64();
    }
    for (i = n + m; i > n; i--)
    { // leaf nodes
        d[i].a = 1;
        d[i].b = -c[i];

        d[i].push(c[i]);          // slope is -1 if x<c[i], 1 if x>c[i]
        d[i].push(c[i]);          // slope changes by 2
        d[p[i]] = d[p[i]] + d[i]; // add the data to parent node
    }
    for (i = n; i > 1; i--)
    {
        // add edge to parent node
        while (d[i].a > 1)
        {                         // slope over 1 is useless because we can increase only one edge(edge toward parent node)
            d[i].a--;             // slope decrease by 1
            d[i].b += d[i].top(); // y=ax+b=(a-1)x+(b+x) at slope changing point
            d[i].pop();
        }
        long long int ta = d[i].top(); // increase length of slope -1 part by c[i]
        d[i].pop();
        long long int tb = d[i].top();
        d[i].pop();
        d[i].push(tb + c[i]); // move location of slope 0, 1 part by c[i]
        d[i].push(ta + c[i]);
        d[i].b -= c[i];           // y is decreased by c[i] at sufficiently large x (slope 1 part)
        d[p[i]] = d[p[i]] + d[i]; // add the data to parent node
    }
    while (d[1].a > 0)
    { // root node, y at slope 0 is the answer because it is minimum y
        d[1].a--;
        d[1].b += d[1].top();
        d[1].pop();
    }
    printf("%lld\n", d[1].b);
    return 0;
}

Compilation message

fireworks.cpp:8: warning: ignoring '#pragma region dalykai' [-Wunknown-pragmas]
    8 | #pragma region dalykai
      | 
fireworks.cpp:32: warning: ignoring '#pragma endregion ' [-Wunknown-pragmas]
   32 | #pragma endregion
      | 
fireworks.cpp: In function 'int main()':
fireworks.cpp:107:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  107 |     scanf("%d%d", &n, &m);
      |     ~~~~~^~~~~~~~~~~~~~~~
fireworks.cpp:110:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  110 |         scanf("%d%d", &p[i], &c[i]);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 0 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 0 ms 340 KB Output is correct
4 Correct 0 ms 340 KB Output is correct
5 Correct 0 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 0 ms 340 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 0 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 0 ms 340 KB Output is correct
12 Correct 0 ms 340 KB Output is correct
13 Correct 0 ms 340 KB Output is correct
14 Correct 0 ms 340 KB Output is correct
15 Correct 0 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 340 KB Output is correct
29 Correct 0 ms 340 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
31 Correct 1 ms 340 KB Output is correct
32 Correct 1 ms 468 KB Output is correct
33 Correct 2 ms 468 KB Output is correct
34 Correct 3 ms 596 KB Output is correct
35 Correct 3 ms 596 KB Output is correct
36 Correct 3 ms 708 KB Output is correct
37 Correct 3 ms 724 KB Output is correct
38 Correct 4 ms 748 KB Output is correct
39 Correct 3 ms 724 KB Output is correct
40 Correct 1 ms 596 KB Output is correct
41 Correct 2 ms 596 KB Output is correct
42 Correct 1 ms 596 KB Output is correct
43 Correct 27 ms 768 KB Output is correct
44 Correct 21 ms 804 KB Output is correct
45 Correct 22 ms 796 KB Output is correct
46 Correct 8 ms 908 KB Output is correct
47 Correct 8 ms 984 KB Output is correct
48 Correct 31 ms 808 KB Output is correct
49 Correct 32 ms 1032 KB Output is correct
50 Correct 66 ms 820 KB Output is correct
51 Correct 62 ms 764 KB Output is correct
52 Correct 48 ms 876 KB Output is correct
53 Correct 46 ms 844 KB Output is correct
54 Correct 198 ms 932 KB Output is correct
# 결과 실행 시간 메모리 Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 0 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 0 ms 340 KB Output is correct
12 Correct 0 ms 340 KB Output is correct
13 Correct 0 ms 340 KB Output is correct
14 Correct 0 ms 340 KB Output is correct
15 Correct 0 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 340 KB Output is correct
29 Correct 0 ms 340 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
31 Correct 1 ms 340 KB Output is correct
32 Correct 1 ms 468 KB Output is correct
33 Correct 2 ms 468 KB Output is correct
34 Correct 3 ms 596 KB Output is correct
35 Correct 3 ms 596 KB Output is correct
36 Correct 3 ms 708 KB Output is correct
37 Correct 3 ms 724 KB Output is correct
38 Correct 4 ms 748 KB Output is correct
39 Correct 3 ms 724 KB Output is correct
40 Correct 1 ms 596 KB Output is correct
41 Correct 2 ms 596 KB Output is correct
42 Correct 1 ms 596 KB Output is correct
43 Correct 27 ms 768 KB Output is correct
44 Correct 21 ms 804 KB Output is correct
45 Correct 22 ms 796 KB Output is correct
46 Correct 8 ms 908 KB Output is correct
47 Correct 8 ms 984 KB Output is correct
48 Correct 31 ms 808 KB Output is correct
49 Correct 32 ms 1032 KB Output is correct
50 Correct 66 ms 820 KB Output is correct
51 Correct 62 ms 764 KB Output is correct
52 Correct 48 ms 876 KB Output is correct
53 Correct 46 ms 844 KB Output is correct
54 Correct 198 ms 932 KB Output is correct
55 Correct 11 ms 1540 KB Output is correct
56 Correct 84 ms 5276 KB Output is correct
57 Correct 141 ms 8712 KB Output is correct
58 Correct 173 ms 11144 KB Output is correct
59 Correct 369 ms 14564 KB Output is correct
60 Correct 415 ms 18096 KB Output is correct
61 Correct 508 ms 20244 KB Output is correct
62 Correct 540 ms 22572 KB Output is correct
63 Correct 547 ms 27400 KB Output is correct
64 Correct 823 ms 27828 KB Output is correct
65 Correct 75 ms 19032 KB Output is correct
66 Correct 72 ms 18984 KB Output is correct
67 Correct 73 ms 19120 KB Output is correct
68 Execution timed out 2067 ms 24220 KB Time limit exceeded
69 Halted 0 ms 0 KB -