Submission #707813

# Submission time Handle Problem Language Result Execution time Memory
707813 2023-03-10T08:23:02 Z LittleCube Escape Route (JOI21_escape_route) C++17
100 / 100
3158 ms 682312 KB
#include "escape_route.h"
#include <bits/stdc++.h>
#define pii pair<int, int>
#define pll pair<ll, ll>
#define F first
#define S second
#define ll long long
using namespace std;

const ll inf = 100'000'000'000'000'000;
ll d1[90][90 * 90 + 5][90], d2[90][90], from[90];
vector<ll> tp[90];
vector<pll> last[90][90];

int getT(int i, ll t)
{
    return upper_bound(tp[i].begin(), tp[i].end(), t, greater<>()) - tp[i].begin() - 1;
}

void update(int N, int r, int t, int u, int v, ll w)
{
    int vt = getT(v, d1[r][t][u] + w);
    if (vt < 0)
        return;
    for (int i = 0; i < N; i++)
        d1[r][t][i] = min(d1[r][t][u] + w + d1[v][vt][i] - tp[v][vt], d1[r][t][i]);
}

pll calcNextEdge(int N, int r, ll T, int t)
{
    ll nt = -1, ni = -1, nj = -1;
    for (int i = 0; i < N; i++)
        if (!last[r][i].empty())
            if (nt < T - (d1[r][t][i] - last[r][i].back().F))
                nt = T - (d1[r][t][i] - last[r][i].back().F), ni = i;

    if (ni >= 0)
    {
        nj = last[r][ni].back().S;
        last[r][ni].pop_back();
    }
    return pll(nj, nt);
}

vector<ll> calculate_necessary_time(
    int N, int M, ll S, int Q,
    vector<int> A, vector<int> B, vector<ll> L, vector<ll> C, vector<int> U, vector<int> V, vector<ll> T)
{
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < M; j++)
        {
            last[i][A[j]].emplace_back(pll(C[j] - L[j], j));
            last[i][B[j]].emplace_back(pll(C[j] - L[j], j));
        }
        for (int j = 0; j < N; j++)
            sort(last[i][j].begin(), last[i][j].end());
    }

    priority_queue<tuple<ll, int, int>> pq;
    for (int i = 0; i < N; i++)
    {
        tp[i].emplace_back(S - 1);
        for (int j = 0; j < N; j++)
            d1[i][0][j] = (i == j ? S - 1 : inf << 1);
        auto [j, nt] = calcNextEdge(N, i, tp[i].back(), (int)tp[i].size() - 1);
        if (nt >= 0)
            pq.push(make_tuple(nt, i, j));
    }

    while (!pq.empty())
    {
        auto [t, i, j] = pq.top();
        pq.pop();
        if (t < tp[i].back())
        {
            tp[i].emplace_back(t);
            int tt = (int)tp[i].size() - 1;
            for (int k = 0; k < N; k++)
                d1[i][tt][k] = d1[i][tt - 1][k] - (tp[i][tt - 1] - tp[i][tt]);
        }
        update(N, i, (int)tp[i].size() - 1, A[j], B[j], L[j]);
        update(N, i, (int)tp[i].size() - 1, B[j], A[j], L[j]);
        auto [k, nt] = calcNextEdge(N, i, tp[i].back(), (int)tp[i].size() - 1);
        if (nt >= 0)
            pq.push(make_tuple(nt, i, k));
    }

    // for (int i = 0; i < N; i++)
    //     for (int j = 0; j < tp[i].size(); j++)
    //     {
    //         cerr << i << " (time " << tp[i][j] << ") ";
    //         for (int k = 0; k < N; k++)
    //             cout << d1[i][j][k] << " \n"[k == N - 1];
    //     }

    vector<pair<int, pll>> E[90];
    for (int i = 0; i < M; i++)
    {
        E[A[i]].emplace_back(make_pair(B[i], pll(C[i], L[i])));
        E[B[i]].emplace_back(make_pair(A[i], pll(C[i], L[i])));
    }
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++)
            d2[i][j] = (i == j ? 0 : inf);
        priority_queue<pll, vector<pll>, greater<pll>> pq;
        pq.push(pll(0, i));
        while (!pq.empty())
        {
            auto [d, u] = pq.top();
            pq.pop();
            if (d > d2[i][u])
                continue;
            for (auto [v, p] : E[u])
            {
                auto [c, l] = p;
                ll nd = (d % S <= c - l ? d : (d + S - 1) / S * S) + l;
                if (nd < d2[i][v])
                {
                    d2[i][v] = nd;
                    pq.push(pll(d2[i][v], v));
                }
            }
        }
    }
    // for (int i = 0; i < N; i++)
    //     for (int j = 0; j < N; j++)
    //         cerr << d2[i][j] << " \n"[j == N - 1];
    vector<ll> ans(Q);
    for (int i = 0; i < Q; i++)
    {
        int t = upper_bound(tp[U[i]].begin(), tp[U[i]].end(), T[i], greater<>()) - tp[U[i]].begin() - 1;
        ans[i] = inf;
        for (int j = 0; j < N; j++)
            if (d1[U[i]][t][j] < inf)
            {
                if (j == V[i])
                    ans[i] = min(ans[i], d1[U[i]][t][j] - tp[U[i]][t]);
                else
                    ans[i] = min(ans[i], S + d2[j][V[i]] - T[i]);
            }
    }
    return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 25 ms 65252 KB Output is correct
2 Correct 28 ms 65248 KB Output is correct
3 Correct 73 ms 65216 KB Output is correct
4 Correct 25 ms 65228 KB Output is correct
5 Correct 29 ms 65236 KB Output is correct
6 Correct 27 ms 65228 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 822 ms 152160 KB Output is correct
2 Correct 753 ms 173420 KB Output is correct
3 Correct 752 ms 161616 KB Output is correct
4 Correct 851 ms 177608 KB Output is correct
5 Correct 848 ms 179052 KB Output is correct
6 Correct 25 ms 65236 KB Output is correct
7 Correct 758 ms 161288 KB Output is correct
8 Correct 417 ms 147428 KB Output is correct
9 Correct 742 ms 153592 KB Output is correct
10 Correct 848 ms 176992 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 65252 KB Output is correct
2 Correct 28 ms 65248 KB Output is correct
3 Correct 73 ms 65216 KB Output is correct
4 Correct 25 ms 65228 KB Output is correct
5 Correct 29 ms 65236 KB Output is correct
6 Correct 27 ms 65228 KB Output is correct
7 Correct 822 ms 152160 KB Output is correct
8 Correct 753 ms 173420 KB Output is correct
9 Correct 752 ms 161616 KB Output is correct
10 Correct 851 ms 177608 KB Output is correct
11 Correct 848 ms 179052 KB Output is correct
12 Correct 25 ms 65236 KB Output is correct
13 Correct 758 ms 161288 KB Output is correct
14 Correct 417 ms 147428 KB Output is correct
15 Correct 742 ms 153592 KB Output is correct
16 Correct 848 ms 176992 KB Output is correct
17 Correct 1134 ms 160624 KB Output is correct
18 Correct 1138 ms 156384 KB Output is correct
19 Correct 902 ms 174768 KB Output is correct
20 Correct 1041 ms 160332 KB Output is correct
21 Correct 1165 ms 177868 KB Output is correct
22 Correct 1135 ms 176240 KB Output is correct
23 Correct 1081 ms 158540 KB Output is correct
24 Correct 491 ms 142988 KB Output is correct
25 Correct 1057 ms 147476 KB Output is correct
26 Correct 1142 ms 172120 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 65252 KB Output is correct
2 Correct 28 ms 65248 KB Output is correct
3 Correct 73 ms 65216 KB Output is correct
4 Correct 25 ms 65228 KB Output is correct
5 Correct 29 ms 65236 KB Output is correct
6 Correct 27 ms 65228 KB Output is correct
7 Correct 822 ms 152160 KB Output is correct
8 Correct 753 ms 173420 KB Output is correct
9 Correct 752 ms 161616 KB Output is correct
10 Correct 851 ms 177608 KB Output is correct
11 Correct 848 ms 179052 KB Output is correct
12 Correct 25 ms 65236 KB Output is correct
13 Correct 758 ms 161288 KB Output is correct
14 Correct 417 ms 147428 KB Output is correct
15 Correct 742 ms 153592 KB Output is correct
16 Correct 848 ms 176992 KB Output is correct
17 Correct 1134 ms 160624 KB Output is correct
18 Correct 1138 ms 156384 KB Output is correct
19 Correct 902 ms 174768 KB Output is correct
20 Correct 1041 ms 160332 KB Output is correct
21 Correct 1165 ms 177868 KB Output is correct
22 Correct 1135 ms 176240 KB Output is correct
23 Correct 1081 ms 158540 KB Output is correct
24 Correct 491 ms 142988 KB Output is correct
25 Correct 1057 ms 147476 KB Output is correct
26 Correct 1142 ms 172120 KB Output is correct
27 Correct 1646 ms 261064 KB Output is correct
28 Correct 1721 ms 279504 KB Output is correct
29 Correct 1219 ms 319820 KB Output is correct
30 Correct 1578 ms 293812 KB Output is correct
31 Correct 1681 ms 327852 KB Output is correct
32 Correct 1673 ms 329016 KB Output is correct
33 Correct 540 ms 198100 KB Output is correct
34 Correct 1637 ms 292980 KB Output is correct
35 Correct 1682 ms 329800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 65252 KB Output is correct
2 Correct 28 ms 65248 KB Output is correct
3 Correct 73 ms 65216 KB Output is correct
4 Correct 25 ms 65228 KB Output is correct
5 Correct 29 ms 65236 KB Output is correct
6 Correct 27 ms 65228 KB Output is correct
7 Correct 822 ms 152160 KB Output is correct
8 Correct 753 ms 173420 KB Output is correct
9 Correct 752 ms 161616 KB Output is correct
10 Correct 851 ms 177608 KB Output is correct
11 Correct 848 ms 179052 KB Output is correct
12 Correct 25 ms 65236 KB Output is correct
13 Correct 758 ms 161288 KB Output is correct
14 Correct 417 ms 147428 KB Output is correct
15 Correct 742 ms 153592 KB Output is correct
16 Correct 848 ms 176992 KB Output is correct
17 Correct 1134 ms 160624 KB Output is correct
18 Correct 1138 ms 156384 KB Output is correct
19 Correct 902 ms 174768 KB Output is correct
20 Correct 1041 ms 160332 KB Output is correct
21 Correct 1165 ms 177868 KB Output is correct
22 Correct 1135 ms 176240 KB Output is correct
23 Correct 1081 ms 158540 KB Output is correct
24 Correct 491 ms 142988 KB Output is correct
25 Correct 1057 ms 147476 KB Output is correct
26 Correct 1142 ms 172120 KB Output is correct
27 Correct 1646 ms 261064 KB Output is correct
28 Correct 1721 ms 279504 KB Output is correct
29 Correct 1219 ms 319820 KB Output is correct
30 Correct 1578 ms 293812 KB Output is correct
31 Correct 1681 ms 327852 KB Output is correct
32 Correct 1673 ms 329016 KB Output is correct
33 Correct 540 ms 198100 KB Output is correct
34 Correct 1637 ms 292980 KB Output is correct
35 Correct 1682 ms 329800 KB Output is correct
36 Correct 3158 ms 667076 KB Output is correct
37 Correct 2861 ms 574072 KB Output is correct
38 Correct 3081 ms 643324 KB Output is correct
39 Correct 2982 ms 682180 KB Output is correct
40 Correct 2997 ms 682312 KB Output is correct
41 Correct 581 ms 199028 KB Output is correct
42 Correct 3070 ms 655228 KB Output is correct
43 Correct 2924 ms 567444 KB Output is correct