Submission #707001

# Submission time Handle Problem Language Result Execution time Memory
707001 2023-03-08T08:49:10 Z epicci23 Growing Vegetable is Fun 3 (JOI19_ho_t3) C++17
15 / 100
1 ms 468 KB
#include "bits/stdc++.h"
#pragma optimize ("Bismillahirrahmanirrahim")
using namespace std;
#define pb push_back
#define ff first
#define ss second
#define endl "\n" 
#define int long long
#define double long double
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define what_is(x) cerr << #x << " is " << x << endl;
//#define m (l+r)/2
constexpr int N=200005;
constexpr int MOD=1000000007;
constexpr int  INF2 = LLONG_MAX;
constexpr int INF=(int)1e18;
constexpr int LOG=30;
typedef pair<int,int> pii;
typedef tuple<int,int,int> tp;
typedef priority_queue<pii,vector<pii>,greater<pii>> min_pq;
typedef priority_queue<pii> max_pq;
typedef long long ll;
//to think//
/*
 * graph approach
 * dp
 * dividing the problem to smaller statements
 * finding the real constraint
 * sqrt decomposition
 * greedy approach
 * pigeonhole principle
 * rewriting the problem/equality 
 * bitwise approaches
 * binary search if monotonic
 * divide and conquer
 * combinatorics
 * inclusion - exclusion
 * think like bfs
*/
 
 
 
inline int in()
{
  int x;cin >> x;
  return x;
}
 
inline string in2()
{
  string x;cin >> x;
  return x;
}
 
string s;
int n;
vector<int> poz[3];
map<array<int,4>,int> dp;

int f(int a,int b,int c,int fl)
{
  if(a+b+c==n) return 0;
  if(dp.count({a,b,c,fl})) return dp[{a,b,c,fl}];
  if(fl==0)
  {
    if(b==sz(poz[1]) && c==sz(poz[2])) return dp[{a,b,c,fl}]=INF;
    int cev1=INF;
    if(b<sz(poz[1])) cev1=min(cev1,f(a,b+1,c,1)+max(0LL,poz[1][b]-a-b-c));
    if(c<sz(poz[2])) cev1=min(cev1,f(a,b,c+1,2)+max(0LL,poz[2][c]-a-b-c));
    return dp[{a,b,c,fl}]=cev1;
  }
  else if(fl==1)
  {
    if(a==sz(poz[0]) && c==sz(poz[2])) return dp[{a,b,c,fl}]=INF;
    int cev1=INF;
    if(a<sz(poz[0])) cev1=min(cev1,f(a+1,b,c,0)+max(0LL,poz[0][a]-a-b-c));
    if(c<sz(poz[2])) cev1=min(cev1,f(a,b,c+1,2)+max(0LL,poz[2][c]-a-b-c));
    return dp[{a,b,c,fl}]=cev1;
  }
  else if(fl==2)
  {
    if(a==sz(poz[0]) && b==sz(poz[1])) return dp[{a,b,c,fl}]=INF;
    int cev1=INF;
    if(a<sz(poz[0])) cev1=min(cev1,f(a+1,b,c,0)+max(0LL,poz[0][a]-a-b-c));
    if(b<sz(poz[1])) cev1=min(cev1,f(a,b+1,c,1)+max(0LL,poz[1][b]-a-b-c));
    return dp[{a,b,c,fl}]=cev1;
  }
  
  if(a==sz(poz[0]) && b==sz(poz[1]) && c==sz(poz[2])) return dp[{a,b,c,fl}]=INF;
  int cev1=INF;
  if(a<sz(poz[0])) cev1=min(cev1,f(a+1,b,c,0)+max(0LL,poz[0][a]-a-b-c));
  if(b<sz(poz[1])) cev1=min(cev1,f(a,b+1,c,1)+max(0LL,poz[1][b]-a-b-c));
  if(c<sz(poz[2])) cev1=min(cev1,f(a,b,c+1,2)+max(0LL,poz[2][c]-a-b-c));
  return dp[{a,b,c,fl}]=cev1;
}

void solve()
{
  n=in();s=in2();
  for(int i=0;i<n;i++)
  {
    if(s[i]=='R') poz[0].pb(i);
    else if(s[i]=='Y') poz[1].pb(i);
    else poz[2].pb(i);
  }
  int ans=f(0,0,0,3);
  if(ans==INF) cout << -1 << endl;
  else cout << ans << endl;
}
 
int32_t main(){
   
 
     cin.tie(0); ios::sync_with_stdio(0);
     cout << fixed <<  setprecision(15);
   
   int t=1;//cin>> t;
 
 for(int i=1;i<=t;i++)
 {
  //  cout << "Case #" << i << ": ";
    solve();
 }
 
 return 0;
}

Compilation message

joi2019_ho_t3.cpp:2: warning: ignoring '#pragma optimize ' [-Wunknown-pragmas]
    2 | #pragma optimize ("Bismillahirrahmanirrahim")
      |
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 316 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 320 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Incorrect 1 ms 212 KB Output isn't correct
12 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 316 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 320 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Incorrect 1 ms 212 KB Output isn't correct
12 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 1 ms 316 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 468 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 320 KB Output is correct
16 Correct 1 ms 372 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 316 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 212 KB Output is correct
5 Correct 1 ms 320 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Incorrect 1 ms 212 KB Output isn't correct
12 Halted 0 ms 0 KB -