Submission #706191

#TimeUsernameProblemLanguageResultExecution timeMemory
706191bLICFactories (JOI14_factories)C++17
100 / 100
4709 ms209128 KiB
#include <bits/stdc++.h> using namespace std; #define endl "\n" #define f(i,a,b) for(int i=int(a);i<int(b);++i) #define pr pair #define ar array #define fr first #define sc second #define vt vector #define pb push_back #define eb emplace_back #define LB lower_bound #define UB upper_bound #define PQ priority_queue #define SZ(x) ((int)(x).size()) #define all(a) (a).begin(),(a).end() #define allr(a) (a).rbegin(),(a).rend() #define mem(a,b) memset(a, b, sizeof(a)) template<class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } const long long INF = 1e16; struct edge { int node, weight; edge(int _node, int _weight) : node(_node), weight(_weight) {} }; struct centroid_decomposition { int N; vector<vector<edge>> adj; vector<int> depth; vector<int> subtree_size; // parent of a node in centroid tree. vector<int> centroid_parent; vector<int> node_list; // gives the distance of each node to its descendants in centroid tree. vector<vector<long long>> dis; // from node to its ancestors. bool found_centroid; void init(int _N) { N = _N; adj.assign(N, {}); depth.resize(N); subtree_size.resize(N); centroid_parent.assign(N, -1); dis.resize(N,{}); } void add_edge(int u, int v, int w) { assert(u != v); adj[u].emplace_back(edge(v,w)); adj[v].emplace_back(edge(u,w)); } // Erasing edges is O(number of nodes remaining) which is fine within our decomposition. void erase_edge(int from, int to) { for(edge &e : adj[from]) { if(e.node == to) { swap(e, adj[from].back()); adj[from].pop_back(); return; } } assert(false); } int dfs(int node, long long weight = 0, int parent = -1, int root = -1) { if(parent < 0) { root = node; node_list.clear(); } if(found_centroid){ dis[node].pb(weight); } subtree_size[node] = 1; node_list.push_back(node); for(edge &e : adj[node]) { if(e.node != parent) { subtree_size[node] += dfs(e.node, e.weight + weight, node, parent < 0 ? node : root); } } return subtree_size[node]; } int centroid(int root) { int n = dfs(root); bool found; // Repeatedly move to the subtree that is at least half of the tree, if such a subtree exists. do { found = false; for(edge &e : adj[root]){ if(subtree_size[e.node] < subtree_size[root] && 2 * subtree_size[e.node] >= n) { root = e.node; found = true; break; } } } while(found); return root; } // centroid parent of root of centroid tree is -1 void solve(int root) { found_centroid = false; root = centroid(root); found_centroid = true; dfs(root); for(int node : node_list){ if(node != root){ centroid_parent[node] = root; } } for(edge &e : adj[root]){ erase_edge(e.node, root); } // Recurse after solving root, so that edge erasures don't cause incorrect results. for(edge &e : adj[root]){ solve(e.node); } } }cd; vt<long long> ans; void turn_on(int _i){ for(int i = _i, cnt = 0; ~i; i = cd.centroid_parent[i], ++cnt){ ckmin(ans[i],cd.dis[_i][cnt]); } } void turn_off(int _i){ for(int i = _i; ~i; i = cd.centroid_parent[i]){ ans[i] = INF; } } void Init(int N, int A[], int B[], int D[]) { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); cd.init(N); ans.assign(N,INF); f(e,0,N-1){ cd.add_edge(A[e],B[e],D[e]); } cd.solve(0); f(i,0,N) reverse(all(cd.dis[i])); return; } long long Query(int S, int X[], int T, int Y[]) { f(i,0,S) turn_on(X[i]); long long res = INF; f(i,0,T){ for(int j = Y[i], cnt = 0; ~j; j = cd.centroid_parent[j], ++cnt){ ckmin(res, cd.dis[Y[i]][cnt] + ans[j]); } } f(i,0,S) turn_off(X[i]); return res; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...