Submission #705671

# Submission time Handle Problem Language Result Execution time Memory
705671 2023-03-05T00:04:06 Z danikoynov Radio Towers (IOI22_towers) C++17
44 / 100
4000 ms 43024 KB
#include "towers.h"

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;

int n, h[maxn], pref[maxn], peak_pos;
int cnt = 0;


int par[maxn], rnk[maxn];

int find_leader(int v)
{
    return (v == par[v]) ? v : par[v] = find_leader(par[v]);
}

void unite(int v, int u)
{
    v = find_leader(v);
    u = find_leader(u);
    if (v == u)
        return;

    if (rnk[v] < rnk[u])
        swap(v, u);
    rnk[v] += rnk[u];
    par[u] = v;
}

int dp[maxn], bef[maxn], aft[maxn];


struct node
{
    int max_number, min_number;

    node(int _max_number = 0, int _min_number = 2e9)
    {
        max_number = _max_number;
        min_number = _min_number;
    }
};

node tree[4 * maxn];
node merge_node(node left, node right)
{
    node comb;
    comb.max_number = max(left.max_number, right.max_number);
    comb.min_number = min(left.min_number, right.min_number);
    return comb;
}
void build_tree(int root, int left, int right)
{
    if (left == right)
    {
        tree[root] = node(h[left], h[left]);
        return;
    }

    int mid = (left + right) / 2;
    build_tree(root * 2, left, mid);
    build_tree(root * 2 + 1, mid + 1, right);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}
void update(int root, int left, int right, int pos, int val)
{
    if (left == right)
    {
        tree[root] = val;
        return;
    }

    int mid = (left + right) / 2;
    if (pos <= mid)
        update(root * 2, left, mid, pos, val);
    else
        update(root * 2 + 1, mid + 1, right, pos, val);

    tree[root] = merge_node(tree[root * 2], tree[root * 2 + 1]);
}

node query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return 0;

    if (left >= qleft && right <= qright)
        return tree[root];

    int mid = (left + right) / 2;
    return merge_node(query(root * 2, left, mid, qleft, qright),
                      query(root * 2 + 1, mid + 1, right, qleft, qright));
}

int find_rightmost(int root, int left, int right, int qleft, int qright, int val)
{
    ///cout << root << " " << left << " " << right << " " << qleft << " " << qright << " " << val << endl;
    if (tree[root].max_number < val ||
            left > qright || right < qleft)
        return 0;

    if (left == right)
        return left;

    int mid = (left + right) / 2;
    if (left >= qleft && right <= qright)
    {
        if (tree[root * 2 + 1].max_number >= val)
            return find_rightmost(root * 2 + 1, mid + 1, right, qleft, qright, val);
        return find_rightmost(root * 2, left, mid, qleft, qright, val);
    }

    return max(find_rightmost(root * 2, left, mid, qleft, qright, val),
               find_rightmost(root * 2 + 1, mid + 1, right, qleft, qright, val));
}

int find_leftmost(int root, int left, int right, int qleft, int qright, int val)
{
    if (tree[root].max_number < val ||
            left > qright || right < qleft)
        return n + 1;

    if (left == right)
        return left;
    int mid = (left + right) / 2;
    if (left >= qleft && right <= qright)
    {
        if (tree[root * 2].max_number >= val)
            return find_leftmost(root * 2, left, mid, qleft, qright, val);
        return find_leftmost(root * 2 + 1, mid + 1, right, qleft, qright, val);

    }

    return min(find_leftmost(root * 2, left, mid, qleft, qright, val),
               find_leftmost(root * 2 + 1, mid + 1, right, qleft, qright, val));
}



struct diff_node
{
    int max_number, min_number;
    int diff_to_right;
    int diff_to_left;

    diff_node()
    {
        max_number = 0;
        min_number = 2e9;
        diff_to_right = 0;
        diff_to_left = 0;
    }
};

diff_node merge_diff(diff_node dn1, diff_node dn2)
{
    diff_node res;
    res.max_number = max(dn1.max_number, dn2.max_number);
    res.min_number = min(dn1.min_number, dn2.min_number);
    res.diff_to_right = max(dn2.max_number - dn1.min_number, max(dn1.diff_to_right, dn2.diff_to_right));
    res.diff_to_left = max(dn1.max_number - dn2.min_number, max(dn1.diff_to_left, dn2.diff_to_left));
    return res;
}

diff_node diff_tree[4 * maxn];
void build_diff_tree(int root, int left, int right)
{
    if (left == right)
    {
        diff_tree[root].max_number = diff_tree[root].min_number = h[left];
        return;
    }

    int mid = (left + right) / 2;
    build_diff_tree(root * 2, left, mid);
    build_diff_tree(root * 2 + 1, mid + 1, right);

    diff_tree[root] = merge_diff(diff_tree[root * 2], diff_tree[root * 2 + 1]);
}

diff_node diff_query(int root, int left, int right, int qleft, int qright)
{
    if (left > qright || right < qleft)
        return diff_node();

    if (left >= qleft && right <= qright)
        return diff_tree[root];

    int mid = (left + right) / 2;
    return merge_diff(diff_query(root * 2, left, mid, qleft, qright),
                      diff_query(root * 2 + 1, mid + 1, right, qleft, qright));
}

vector < pair < int, int > > val;
unordered_map < int, int > rev;
vector < int > merge_tree[4 * maxn];

void conquer(int left_root, int right_root, int root)
{
    int idx1 = 0, idx2 = 0;
    while(idx1 < merge_tree[left_root].size() && idx2 < merge_tree[right_root].size())
    {
        if (merge_tree[left_root][idx1] < merge_tree[right_root][idx2])
        {
            merge_tree[root].push_back(merge_tree[left_root][idx1 ++]);
        }
        else
        {
            merge_tree[root].push_back(merge_tree[right_root][idx2 ++]);
        }
    }

    while(idx1 < merge_tree[left_root].size())
                    merge_tree[root].push_back(merge_tree[left_root][idx1 ++]);

    while(idx2 < merge_tree[right_root].size())
                    merge_tree[root].push_back(merge_tree[right_root][idx2 ++]);
}

void divide(int root, int left, int right)
{
    if (left == right)
    {
        merge_tree[root].push_back(val[left].second);
        return;
    }

    int mid = (left + right) / 2;
    divide(root * 2, left, mid);
    divide(root * 2 + 1, mid + 1, right);

    conquer(root * 2, root * 2 + 1, root);
}

int query_max_under(int root, int val)
{
    int lf = 0, rf = (int)(merge_tree[root].size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (merge_tree[root][mf] <= val)
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    if (rf < 0)
        return 0;
    return merge_tree[root][rf];
}

int query_max_under(int root, int left, int right, int qleft, int qright, int val)
{
    if (left > qright || right < qleft)
        return 0;

    if (left >= qleft && right <= qright)
        return query_max_under(root, val);

    int mid = (left + right) / 2;
    return max(query_max_under(root * 2, left, mid, qleft, qright, val),
               query_max_under(root * 2 + 1, mid + 1, right, qleft, qright, val));
}
void init(int N, std::vector<int> H)
{
    n = N;
    for (int i = 0; i < n; i ++)
        h[i + 1] = H[i], rev[H[i]] = i + 1;

    for (int i = 1; i <= n; i ++)
        if (h[i] > h[i - 1] && h[i] > h[i + 1])
            cnt ++;
    for (int i = 2; i < n; i ++)
    {
        pref[i] = pref[i - 1];
        if (h[i] > h[i - 1] && h[i] > h[i + 1])
        {
            pref[i] ++, peak_pos = i;

        }
    }

    build_tree(1, 1, n);
    build_diff_tree(1, 1, n);
    vector < int > st;
    st.push_back(0);
    for (int i = 1; i <= n; i ++)
    {


        while(!st.empty() && h[st.back()] >= h[i])
            st.pop_back();
        bef[i] = st.back();
        st.push_back(i);
    }

    st.clear();
    st.push_back(n + 1);
    for (int i = n; i > 0; i --)
    {


        while(!st.empty() && h[st.back()] >= h[i])
            st.pop_back();
        aft[i] = st.back();
        st.push_back(i);
    }

    for (int i = 1; i <= n; i ++)
    {

        ///cout << bef[i] << " " << aft[i] << endl;
        int h1 = 0, h2 = 0;
        if (bef[i] != i - 1)
            h1 = query(1, 1, n, bef[i] + 1, i - 1).max_number;
        if (bef[i] == 0)
            h1 = 2e9 + 10;
        if (aft[i] != i + 1)
            h2 = query(1, 1, n, i + 1, aft[i] - 1).max_number;
        if (aft[i] == n + 1)
            h2 = 2e9 + 10;
        val.push_back({min(h1, h2) - h[i], i});
        ///cout << query(1, 1, n, bef[i] + 1)
    }

    sort(val.begin(), val.end());

    divide(1, 0, val.size() - 1);
    //for (int v : val)
    //    cout << v << " ";
    // cout << endl;
}


vector < int > act[maxn];
int cnt_query = 0;
int max_towers(int L, int R, int D)
{

    L ++;
    R ++;
    cnt_query ++;


    int lf = 0, rf = (int)(val.size()) - 1;
    while(lf <= rf)
    {
        int mf = (lf + rf) / 2;
        if (val[mf].first < D)
            lf = mf + 1;
        else
            rf = mf - 1;
    }
    ///vector < int > towers;
    int leftmost = n + 1, rightmost = 0, ans = 0;
    rightmost = query_max_under(1, 0, val.size() - 1, lf, val.size() - 1, R);
    for (int i = lf; i < val.size(); i ++)
    {
        if (val[i].second >= L && val[i].second <= R)
        {
            ans ++;
            ///towers.push_back(val[i].second);
            leftmost = min(leftmost, val[i].second);
            ///rightmost = max(rightmost, val[i].second);
        }
    }

    if (leftmost > rightmost)
    {
        int lowest_tower = rev[query(1, 1, n, L, R).min_number];
        leftmost = lowest_tower;
        rightmost = lowest_tower;
        ans = 1;
    }

    int highest_tower = 0;
    int La = find_rightmost(1, 1, n, 1, leftmost, h[leftmost] + D);
    diff_node dn = diff_query(1, 1, n, L, La);
    if (dn.diff_to_right >= D)
        ans ++;
    ///cout << La << endl;
    ///cout << leftmost << " " << rightmost << endl;
    /**for (int tower = leftmost - 1; tower >= L; tower --)
    {
        if (tower <= La && h[tower] + D <= highest_tower &&
                highest_tower >= h[leftmost] + D)
        {
            ans ++;
            break;
        }
        highest_tower = max(highest_tower, h[tower]);
    }*/

    highest_tower = 0;
    int Ra = find_leftmost(1, 1, n, rightmost, n, h[rightmost] + D);
    dn = diff_query(1, 1, n, Ra, R);
    if (dn.diff_to_left >= D)
        ans ++;
    /**for (int tower = rightmost + 1; tower <= R; tower ++)
    {

        if (tower >= Ra && h[tower] + D <= highest_tower &&
                highest_tower >= h[rightmost] + D)
        {
            ans ++;
            break;
        }
        highest_tower = max(highest_tower, h[tower]);
    }*/

    return ans;



}

Compilation message

towers.cpp: In function 'void conquer(int, int, int)':
towers.cpp:203:16: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  203 |     while(idx1 < merge_tree[left_root].size() && idx2 < merge_tree[right_root].size())
      |           ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp:203:55: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  203 |     while(idx1 < merge_tree[left_root].size() && idx2 < merge_tree[right_root].size())
      |                                                  ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp:215:16: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  215 |     while(idx1 < merge_tree[left_root].size())
      |           ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp:218:16: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  218 |     while(idx2 < merge_tree[right_root].size())
      |           ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp: In function 'int max_towers(int, int, int)':
towers.cpp:358:24: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<std::pair<int, int> >::size_type' {aka 'long unsigned int'} [-Wsign-compare]
  358 |     for (int i = lf; i < val.size(); i ++)
      |                      ~~^~~~~~~~~~~~
towers.cpp:377:9: warning: variable 'highest_tower' set but not used [-Wunused-but-set-variable]
  377 |     int highest_tower = 0;
      |         ^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 480 ms 33340 KB Output is correct
2 Correct 1010 ms 42888 KB Output is correct
3 Correct 1006 ms 42896 KB Output is correct
4 Correct 869 ms 42908 KB Output is correct
5 Correct 969 ms 42920 KB Output is correct
6 Correct 1289 ms 42936 KB Output is correct
7 Correct 1256 ms 42936 KB Output is correct
8 Correct 10 ms 21328 KB Output is correct
9 Correct 12 ms 21700 KB Output is correct
10 Correct 12 ms 21712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 21456 KB Output is correct
2 Correct 15 ms 21680 KB Output is correct
3 Correct 11 ms 21712 KB Output is correct
4 Correct 12 ms 21704 KB Output is correct
5 Correct 12 ms 21712 KB Output is correct
6 Correct 12 ms 21712 KB Output is correct
7 Correct 12 ms 21768 KB Output is correct
8 Correct 13 ms 21768 KB Output is correct
9 Correct 12 ms 21712 KB Output is correct
10 Correct 14 ms 21700 KB Output is correct
11 Correct 14 ms 21740 KB Output is correct
12 Correct 11 ms 21328 KB Output is correct
13 Correct 13 ms 21736 KB Output is correct
14 Correct 13 ms 21704 KB Output is correct
15 Correct 11 ms 21712 KB Output is correct
16 Correct 11 ms 21712 KB Output is correct
17 Correct 13 ms 21712 KB Output is correct
18 Correct 11 ms 21736 KB Output is correct
19 Correct 11 ms 21712 KB Output is correct
20 Correct 11 ms 21668 KB Output is correct
21 Correct 11 ms 21704 KB Output is correct
22 Correct 11 ms 21680 KB Output is correct
23 Correct 13 ms 21840 KB Output is correct
24 Correct 12 ms 21712 KB Output is correct
25 Correct 12 ms 21584 KB Output is correct
26 Correct 15 ms 21780 KB Output is correct
27 Correct 12 ms 21712 KB Output is correct
28 Correct 12 ms 21712 KB Output is correct
29 Correct 12 ms 21724 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 12 ms 21668 KB Output is correct
32 Correct 11 ms 21692 KB Output is correct
33 Correct 11 ms 21712 KB Output is correct
34 Correct 11 ms 21708 KB Output is correct
35 Correct 15 ms 21712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 21456 KB Output is correct
2 Correct 15 ms 21680 KB Output is correct
3 Correct 11 ms 21712 KB Output is correct
4 Correct 12 ms 21704 KB Output is correct
5 Correct 12 ms 21712 KB Output is correct
6 Correct 12 ms 21712 KB Output is correct
7 Correct 12 ms 21768 KB Output is correct
8 Correct 13 ms 21768 KB Output is correct
9 Correct 12 ms 21712 KB Output is correct
10 Correct 14 ms 21700 KB Output is correct
11 Correct 14 ms 21740 KB Output is correct
12 Correct 11 ms 21328 KB Output is correct
13 Correct 13 ms 21736 KB Output is correct
14 Correct 13 ms 21704 KB Output is correct
15 Correct 11 ms 21712 KB Output is correct
16 Correct 11 ms 21712 KB Output is correct
17 Correct 13 ms 21712 KB Output is correct
18 Correct 11 ms 21736 KB Output is correct
19 Correct 11 ms 21712 KB Output is correct
20 Correct 11 ms 21668 KB Output is correct
21 Correct 11 ms 21704 KB Output is correct
22 Correct 11 ms 21680 KB Output is correct
23 Correct 13 ms 21840 KB Output is correct
24 Correct 12 ms 21712 KB Output is correct
25 Correct 12 ms 21584 KB Output is correct
26 Correct 15 ms 21780 KB Output is correct
27 Correct 12 ms 21712 KB Output is correct
28 Correct 12 ms 21712 KB Output is correct
29 Correct 12 ms 21724 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 12 ms 21668 KB Output is correct
32 Correct 11 ms 21692 KB Output is correct
33 Correct 11 ms 21712 KB Output is correct
34 Correct 11 ms 21708 KB Output is correct
35 Correct 15 ms 21712 KB Output is correct
36 Correct 75 ms 33740 KB Output is correct
37 Correct 109 ms 42440 KB Output is correct
38 Correct 105 ms 42560 KB Output is correct
39 Correct 99 ms 42556 KB Output is correct
40 Correct 106 ms 42496 KB Output is correct
41 Correct 104 ms 42536 KB Output is correct
42 Correct 105 ms 42436 KB Output is correct
43 Correct 82 ms 42940 KB Output is correct
44 Correct 82 ms 42828 KB Output is correct
45 Correct 101 ms 42724 KB Output is correct
46 Correct 98 ms 42796 KB Output is correct
47 Correct 113 ms 42616 KB Output is correct
48 Correct 111 ms 42536 KB Output is correct
49 Correct 106 ms 42440 KB Output is correct
50 Correct 84 ms 42940 KB Output is correct
51 Correct 87 ms 42828 KB Output is correct
52 Correct 111 ms 42480 KB Output is correct
53 Correct 100 ms 42448 KB Output is correct
54 Correct 109 ms 42524 KB Output is correct
55 Correct 90 ms 42840 KB Output is correct
56 Correct 93 ms 42704 KB Output is correct
57 Correct 100 ms 41916 KB Output is correct
58 Correct 107 ms 42468 KB Output is correct
59 Correct 116 ms 42540 KB Output is correct
60 Correct 99 ms 42476 KB Output is correct
61 Correct 100 ms 42556 KB Output is correct
62 Correct 106 ms 42628 KB Output is correct
63 Correct 116 ms 42552 KB Output is correct
64 Correct 91 ms 42924 KB Output is correct
65 Correct 83 ms 42916 KB Output is correct
66 Correct 99 ms 42712 KB Output is correct
67 Correct 88 ms 42924 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 4027 ms 42336 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 499 ms 26360 KB Output is correct
2 Correct 2860 ms 42632 KB Output is correct
3 Correct 2839 ms 42476 KB Output is correct
4 Correct 3716 ms 42492 KB Output is correct
5 Correct 3817 ms 42448 KB Output is correct
6 Correct 3645 ms 42468 KB Output is correct
7 Correct 3457 ms 42600 KB Output is correct
8 Correct 941 ms 42936 KB Output is correct
9 Correct 1020 ms 43024 KB Output is correct
10 Correct 996 ms 42852 KB Output is correct
11 Correct 1022 ms 42828 KB Output is correct
12 Correct 121 ms 42548 KB Output is correct
13 Correct 101 ms 42536 KB Output is correct
14 Correct 111 ms 42500 KB Output is correct
15 Correct 91 ms 42844 KB Output is correct
16 Correct 93 ms 42668 KB Output is correct
17 Correct 108 ms 41980 KB Output is correct
18 Correct 105 ms 42476 KB Output is correct
19 Correct 107 ms 42468 KB Output is correct
20 Correct 102 ms 42492 KB Output is correct
21 Correct 100 ms 42476 KB Output is correct
22 Correct 100 ms 42524 KB Output is correct
23 Correct 106 ms 42452 KB Output is correct
24 Correct 88 ms 42872 KB Output is correct
25 Correct 85 ms 42924 KB Output is correct
26 Correct 89 ms 42684 KB Output is correct
27 Correct 101 ms 42876 KB Output is correct
28 Correct 12 ms 21712 KB Output is correct
29 Correct 11 ms 21712 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 11 ms 21712 KB Output is correct
32 Correct 12 ms 21712 KB Output is correct
33 Correct 12 ms 21584 KB Output is correct
34 Correct 11 ms 21760 KB Output is correct
35 Correct 14 ms 21712 KB Output is correct
36 Correct 14 ms 21676 KB Output is correct
37 Correct 11 ms 21712 KB Output is correct
38 Correct 12 ms 21820 KB Output is correct
39 Correct 13 ms 21680 KB Output is correct
40 Correct 11 ms 21712 KB Output is correct
41 Correct 12 ms 21712 KB Output is correct
42 Correct 11 ms 21712 KB Output is correct
43 Correct 12 ms 21712 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 11 ms 21456 KB Output is correct
2 Correct 15 ms 21680 KB Output is correct
3 Correct 11 ms 21712 KB Output is correct
4 Correct 12 ms 21704 KB Output is correct
5 Correct 12 ms 21712 KB Output is correct
6 Correct 12 ms 21712 KB Output is correct
7 Correct 12 ms 21768 KB Output is correct
8 Correct 13 ms 21768 KB Output is correct
9 Correct 12 ms 21712 KB Output is correct
10 Correct 14 ms 21700 KB Output is correct
11 Correct 14 ms 21740 KB Output is correct
12 Correct 11 ms 21328 KB Output is correct
13 Correct 13 ms 21736 KB Output is correct
14 Correct 13 ms 21704 KB Output is correct
15 Correct 11 ms 21712 KB Output is correct
16 Correct 11 ms 21712 KB Output is correct
17 Correct 13 ms 21712 KB Output is correct
18 Correct 11 ms 21736 KB Output is correct
19 Correct 11 ms 21712 KB Output is correct
20 Correct 11 ms 21668 KB Output is correct
21 Correct 11 ms 21704 KB Output is correct
22 Correct 11 ms 21680 KB Output is correct
23 Correct 13 ms 21840 KB Output is correct
24 Correct 12 ms 21712 KB Output is correct
25 Correct 12 ms 21584 KB Output is correct
26 Correct 15 ms 21780 KB Output is correct
27 Correct 12 ms 21712 KB Output is correct
28 Correct 12 ms 21712 KB Output is correct
29 Correct 12 ms 21724 KB Output is correct
30 Correct 12 ms 21712 KB Output is correct
31 Correct 12 ms 21668 KB Output is correct
32 Correct 11 ms 21692 KB Output is correct
33 Correct 11 ms 21712 KB Output is correct
34 Correct 11 ms 21708 KB Output is correct
35 Correct 15 ms 21712 KB Output is correct
36 Correct 75 ms 33740 KB Output is correct
37 Correct 109 ms 42440 KB Output is correct
38 Correct 105 ms 42560 KB Output is correct
39 Correct 99 ms 42556 KB Output is correct
40 Correct 106 ms 42496 KB Output is correct
41 Correct 104 ms 42536 KB Output is correct
42 Correct 105 ms 42436 KB Output is correct
43 Correct 82 ms 42940 KB Output is correct
44 Correct 82 ms 42828 KB Output is correct
45 Correct 101 ms 42724 KB Output is correct
46 Correct 98 ms 42796 KB Output is correct
47 Correct 113 ms 42616 KB Output is correct
48 Correct 111 ms 42536 KB Output is correct
49 Correct 106 ms 42440 KB Output is correct
50 Correct 84 ms 42940 KB Output is correct
51 Correct 87 ms 42828 KB Output is correct
52 Correct 111 ms 42480 KB Output is correct
53 Correct 100 ms 42448 KB Output is correct
54 Correct 109 ms 42524 KB Output is correct
55 Correct 90 ms 42840 KB Output is correct
56 Correct 93 ms 42704 KB Output is correct
57 Correct 100 ms 41916 KB Output is correct
58 Correct 107 ms 42468 KB Output is correct
59 Correct 116 ms 42540 KB Output is correct
60 Correct 99 ms 42476 KB Output is correct
61 Correct 100 ms 42556 KB Output is correct
62 Correct 106 ms 42628 KB Output is correct
63 Correct 116 ms 42552 KB Output is correct
64 Correct 91 ms 42924 KB Output is correct
65 Correct 83 ms 42916 KB Output is correct
66 Correct 99 ms 42712 KB Output is correct
67 Correct 88 ms 42924 KB Output is correct
68 Execution timed out 4027 ms 42336 KB Time limit exceeded
69 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 480 ms 33340 KB Output is correct
2 Correct 1010 ms 42888 KB Output is correct
3 Correct 1006 ms 42896 KB Output is correct
4 Correct 869 ms 42908 KB Output is correct
5 Correct 969 ms 42920 KB Output is correct
6 Correct 1289 ms 42936 KB Output is correct
7 Correct 1256 ms 42936 KB Output is correct
8 Correct 10 ms 21328 KB Output is correct
9 Correct 12 ms 21700 KB Output is correct
10 Correct 12 ms 21712 KB Output is correct
11 Correct 11 ms 21456 KB Output is correct
12 Correct 15 ms 21680 KB Output is correct
13 Correct 11 ms 21712 KB Output is correct
14 Correct 12 ms 21704 KB Output is correct
15 Correct 12 ms 21712 KB Output is correct
16 Correct 12 ms 21712 KB Output is correct
17 Correct 12 ms 21768 KB Output is correct
18 Correct 13 ms 21768 KB Output is correct
19 Correct 12 ms 21712 KB Output is correct
20 Correct 14 ms 21700 KB Output is correct
21 Correct 14 ms 21740 KB Output is correct
22 Correct 11 ms 21328 KB Output is correct
23 Correct 13 ms 21736 KB Output is correct
24 Correct 13 ms 21704 KB Output is correct
25 Correct 11 ms 21712 KB Output is correct
26 Correct 11 ms 21712 KB Output is correct
27 Correct 13 ms 21712 KB Output is correct
28 Correct 11 ms 21736 KB Output is correct
29 Correct 11 ms 21712 KB Output is correct
30 Correct 11 ms 21668 KB Output is correct
31 Correct 11 ms 21704 KB Output is correct
32 Correct 11 ms 21680 KB Output is correct
33 Correct 13 ms 21840 KB Output is correct
34 Correct 12 ms 21712 KB Output is correct
35 Correct 12 ms 21584 KB Output is correct
36 Correct 15 ms 21780 KB Output is correct
37 Correct 12 ms 21712 KB Output is correct
38 Correct 12 ms 21712 KB Output is correct
39 Correct 12 ms 21724 KB Output is correct
40 Correct 12 ms 21712 KB Output is correct
41 Correct 12 ms 21668 KB Output is correct
42 Correct 11 ms 21692 KB Output is correct
43 Correct 11 ms 21712 KB Output is correct
44 Correct 11 ms 21708 KB Output is correct
45 Correct 15 ms 21712 KB Output is correct
46 Correct 75 ms 33740 KB Output is correct
47 Correct 109 ms 42440 KB Output is correct
48 Correct 105 ms 42560 KB Output is correct
49 Correct 99 ms 42556 KB Output is correct
50 Correct 106 ms 42496 KB Output is correct
51 Correct 104 ms 42536 KB Output is correct
52 Correct 105 ms 42436 KB Output is correct
53 Correct 82 ms 42940 KB Output is correct
54 Correct 82 ms 42828 KB Output is correct
55 Correct 101 ms 42724 KB Output is correct
56 Correct 98 ms 42796 KB Output is correct
57 Correct 113 ms 42616 KB Output is correct
58 Correct 111 ms 42536 KB Output is correct
59 Correct 106 ms 42440 KB Output is correct
60 Correct 84 ms 42940 KB Output is correct
61 Correct 87 ms 42828 KB Output is correct
62 Correct 111 ms 42480 KB Output is correct
63 Correct 100 ms 42448 KB Output is correct
64 Correct 109 ms 42524 KB Output is correct
65 Correct 90 ms 42840 KB Output is correct
66 Correct 93 ms 42704 KB Output is correct
67 Correct 100 ms 41916 KB Output is correct
68 Correct 107 ms 42468 KB Output is correct
69 Correct 116 ms 42540 KB Output is correct
70 Correct 99 ms 42476 KB Output is correct
71 Correct 100 ms 42556 KB Output is correct
72 Correct 106 ms 42628 KB Output is correct
73 Correct 116 ms 42552 KB Output is correct
74 Correct 91 ms 42924 KB Output is correct
75 Correct 83 ms 42916 KB Output is correct
76 Correct 99 ms 42712 KB Output is correct
77 Correct 88 ms 42924 KB Output is correct
78 Execution timed out 4027 ms 42336 KB Time limit exceeded
79 Halted 0 ms 0 KB -