Submission #705602

#TimeUsernameProblemLanguageResultExecution timeMemory
705602epicci23Collecting Stamps 3 (JOI20_ho_t3)C++17
100 / 100
95 ms129348 KiB
#include "bits/stdc++.h" #pragma optimize ("Bismillahirrahmanirrahim") using namespace std; #define pb push_back #define ff first #define ss second #define endl "\n" #define int long long #define double long double #define sz(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define what_is(x) cerr << #x << " is " << x << endl; //#define m (l+r)/2 constexpr int N=200005; constexpr int MOD=1000000007; constexpr int INF2 = LLONG_MAX; constexpr int INF=(int)1e18; constexpr int LOG=30; typedef pair<int,int> pii; typedef tuple<int,int,int> tp; typedef priority_queue<pii,vector<pii>,greater<pii>> min_pq; typedef priority_queue<pii> max_pq; typedef long long ll; //to think// /* * graph approach * dp * dividing the problem to smaller statements * finding the real constraint * sqrt decomposition * greedy approach * pigeonhole principle * rewriting the problem/equality * bitwise approaches * binary search if monotonic * divide and conquer * combinatorics * inclusion - exclusion * think like bfs */ inline int in() { int x;cin >> x; return x; } inline string in2() { string x;cin >> x; return x; } array<int,2> arr[205]; int dp[202][202][202][2]; void solve() { int n=in(),l=in(); for(int i=0;i<=n+1;i++) for(int j=0;j<=n+1;j++) for(int k=0;k<=n+1;k++) dp[i][j][k][0]=dp[i][j][k][1]=INF; for(int i=1;i<=n;i++) arr[i][0]=in(); for(int i=1;i<=n;i++) arr[i][1]=in(); arr[0][0]=0; arr[n+1][0]=l; dp[0][n+1][0][0]=dp[0][n+1][0][1]=0; int ans=0; for(int i=0;i<=n;i++) { for(int j=n+1;j>i;j--) { for(int k=0;k<=n;k++) { if(dp[i][j][k][0]!=INF) { ans=max(ans,k); int ol=dp[i][j][k][0]+arr[i+1][0]-arr[i][0]; dp[i+1][j][k+(ol<=arr[i+1][1])][0]=min(dp[i+1][j][k+(ol<=arr[i+1][1])][0],ol); int ol2=dp[i][j][k][0]+arr[i][0]+l-arr[j-1][0]; dp[i][j-1][k+(ol2<=arr[j-1][1])][1]=min(dp[i][j-1][k+(ol2<=arr[j-1][1])][1],ol2); } if(dp[i][j][k][1]!=INF) { ans=max(ans,k); int ol=dp[i][j][k][1]+arr[j][0]-arr[j-1][0]; dp[i][j-1][k+(ol<=arr[j-1][1])][1]=min(dp[i][j-1][k+(ol<=arr[j-1][1])][1],ol); int ol2=dp[i][j][k][1]+l-arr[j][0]+arr[i+1][0]; dp[i+1][j][k+(ol2<=arr[i+1][1])][0]=min(dp[i+1][j][k+(ol2<=arr[i+1][1])][0],ol2); } } } } cout << ans << endl; } int32_t main(){ cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(15); int t=1;//cin>> t; for(int i=1;i<=t;i++) { // cout << "Case #" << i << ": "; solve(); } return 0; }

Compilation message (stderr)

ho_t3.cpp:2: warning: ignoring '#pragma optimize ' [-Wunknown-pragmas]
    2 | #pragma optimize ("Bismillahirrahmanirrahim")
      |
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...