Submission #70391

# Submission time Handle Problem Language Result Execution time Memory
70391 2018-08-22T19:08:34 Z Benq JOIRIS (JOI16_joiris) C++14
100 / 100
4 ms 1472 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")

#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>

using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;

typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;

typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;

template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;

#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)

#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()

const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;

int n, k, a[51], dif[51], nex[51];
vpi op;

void cut() {
    int mn = MOD; FOR(i,1,n+1) mn = min(mn,a[i]);
    FOR(i,1,n+1) a[i] -= mn;
}

void nor() {
    while (1) {
        int mx = 0; FOR(i,1,n+1) mx = max(mx,a[i]);
        if (mx < k) {
            //FOR(i,1,n+1) cout << a[i] << " ";
            //cout << "\n";
            return;
        }
        FOR(i,1,n+1) if (a[i] == 0) {
            op.pb({1,i});
            a[i] += k;
        }
        cut();
    }
}

void ad(int x) {
    int hei = 0;
    //FOR(i,1,n+1) cout << a[i] << " ";
    //cout << "\n";
    FOR(i,x,x+k) {
        a[i] ++;
        hei = max(hei,a[i]);
    }
    //FOR(i,1,n+1) cout << a[i] << " ";
    //cout << "\n";
    op.pb({2,x});
    FOR(i,1,n+1) if (i < x || i >= x+k) {
        while (a[i] < hei) {
            a[i] += k;
            op.pb({1,i});
        }
    }
    /*FOR(i,1,n+1) cout << a[i] << " ";
    cout << "\n";*/
    cut();
    /*FOR(i,1,n+1) cout << a[i] << " ";
    cout << "\n";
    cout << "\n";*/
}

void genDif() {
    FOR(i,1,n-k+2) dif[i] = -1;
    FOR(i,2,n+1) {
        // dif[i]+a[i]-a[i-1] = dif[i-k]
        if (i-k < 1) {
            if (i > n-k+1) {
                if ((a[i]-a[i-1]) % k != 0) {
                    // cout << "A\n";
                    cout << -1;
                    exit(0);
                }
                continue;
            } else {
                dif[i] = ((a[i-1]-a[i])%k+k)%k;
            }
        } else {
            if (i > n-k+1) {
                if (dif[i-k] != -1 && dif[i-k] != ((a[i]-a[i-1])%k+k)%k) {
                    // cout << "B\n";
                    cout << -1;
                    exit(0);
                }
                dif[i-k] = ((a[i]-a[i-1])%k+k)%k;
            } else {
                nex[i-k] = ((a[i]-a[i-1])%k+k)%k; 
            }
        }
    }
    FOR(i,1,min(n-k+2,k+1)) {
        int lo = i, hi = i; while (hi+k <= n-k+1) hi += k;
        if (dif[lo] != -1) {
            for (int j = lo+k; j <= hi; j += k) {
                if (dif[j] > -1 && dif[j] != (dif[j-k]-nex[j-k]+k)%k) {
                    cout << -1;
                    exit(0);
                }
                dif[j] = (dif[j-k]-nex[j-k]+k)%k;
            }
        } else {
            if (dif[hi] == -1) dif[hi] = 0;
            for (int j = hi-k; j >= 0; j -= k) {
                if (dif[j] > -1 && dif[j] != (dif[j+k]+nex[j])%k) {
                    cout << -1;
                    exit(0);
                }
                dif[j] = (dif[j+k]+nex[j])%k;
            }
        }
    }
}

int main() {
    ios_base::sync_with_stdio(0); cin.tie(0);
    cin >> n >> k;
    FOR(i,1,n+1) cin >> a[i];
    genDif();
    FOR(i,1,n+1) {
        nor();
        while (dif[i]) {
            ad(i); 
            dif[i] --;
        }
    }
    cout << sz(op) << "\n";
    for (auto a: op) cout << a.f << " " << a.s << "\n";
}

/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( ) 
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# Verdict Execution time Memory Grader output
1 Correct 3 ms 340 KB Output is correct
2 Correct 2 ms 460 KB Output is correct
3 Correct 2 ms 460 KB Output is correct
4 Correct 3 ms 520 KB Output is correct
5 Correct 3 ms 576 KB Output is correct
6 Correct 2 ms 576 KB Output is correct
7 Correct 3 ms 704 KB Output is correct
8 Correct 2 ms 704 KB Output is correct
9 Correct 2 ms 704 KB Output is correct
10 Correct 2 ms 704 KB Output is correct
11 Correct 3 ms 704 KB Output is correct
12 Correct 2 ms 704 KB Output is correct
13 Correct 2 ms 704 KB Output is correct
14 Correct 2 ms 704 KB Output is correct
15 Correct 2 ms 704 KB Output is correct
16 Correct 2 ms 736 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 868 KB Output is correct
2 Correct 3 ms 868 KB Output is correct
3 Correct 3 ms 868 KB Output is correct
4 Correct 2 ms 868 KB Output is correct
5 Correct 2 ms 868 KB Output is correct
6 Correct 3 ms 868 KB Output is correct
7 Correct 3 ms 868 KB Output is correct
8 Correct 3 ms 916 KB Output is correct
9 Correct 3 ms 916 KB Output is correct
10 Correct 3 ms 916 KB Output is correct
11 Correct 4 ms 916 KB Output is correct
12 Correct 3 ms 916 KB Output is correct
13 Correct 2 ms 916 KB Output is correct
14 Correct 2 ms 916 KB Output is correct
15 Correct 2 ms 916 KB Output is correct
16 Correct 2 ms 916 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 340 KB Output is correct
2 Correct 2 ms 460 KB Output is correct
3 Correct 2 ms 460 KB Output is correct
4 Correct 3 ms 520 KB Output is correct
5 Correct 3 ms 576 KB Output is correct
6 Correct 2 ms 576 KB Output is correct
7 Correct 3 ms 704 KB Output is correct
8 Correct 2 ms 704 KB Output is correct
9 Correct 2 ms 704 KB Output is correct
10 Correct 2 ms 704 KB Output is correct
11 Correct 3 ms 704 KB Output is correct
12 Correct 2 ms 704 KB Output is correct
13 Correct 2 ms 704 KB Output is correct
14 Correct 2 ms 704 KB Output is correct
15 Correct 2 ms 704 KB Output is correct
16 Correct 2 ms 736 KB Output is correct
17 Correct 2 ms 1004 KB Output is correct
18 Correct 2 ms 1076 KB Output is correct
19 Correct 3 ms 1076 KB Output is correct
20 Correct 2 ms 1076 KB Output is correct
21 Correct 4 ms 1076 KB Output is correct
22 Correct 2 ms 1076 KB Output is correct
23 Correct 3 ms 1076 KB Output is correct
24 Correct 2 ms 1076 KB Output is correct
25 Correct 3 ms 1076 KB Output is correct
26 Correct 3 ms 1076 KB Output is correct
27 Correct 3 ms 1076 KB Output is correct
28 Correct 2 ms 1076 KB Output is correct
29 Correct 3 ms 1184 KB Output is correct
30 Correct 2 ms 1184 KB Output is correct
31 Correct 2 ms 1184 KB Output is correct
32 Correct 2 ms 1184 KB Output is correct
33 Correct 2 ms 1184 KB Output is correct
34 Correct 3 ms 1184 KB Output is correct
35 Correct 2 ms 1184 KB Output is correct
36 Correct 2 ms 1240 KB Output is correct
37 Correct 3 ms 1240 KB Output is correct
38 Correct 2 ms 1240 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 340 KB Output is correct
2 Correct 2 ms 460 KB Output is correct
3 Correct 2 ms 460 KB Output is correct
4 Correct 3 ms 520 KB Output is correct
5 Correct 3 ms 576 KB Output is correct
6 Correct 2 ms 576 KB Output is correct
7 Correct 3 ms 704 KB Output is correct
8 Correct 2 ms 704 KB Output is correct
9 Correct 2 ms 704 KB Output is correct
10 Correct 2 ms 704 KB Output is correct
11 Correct 3 ms 704 KB Output is correct
12 Correct 2 ms 704 KB Output is correct
13 Correct 2 ms 704 KB Output is correct
14 Correct 2 ms 704 KB Output is correct
15 Correct 2 ms 704 KB Output is correct
16 Correct 2 ms 736 KB Output is correct
17 Correct 3 ms 868 KB Output is correct
18 Correct 3 ms 868 KB Output is correct
19 Correct 3 ms 868 KB Output is correct
20 Correct 2 ms 868 KB Output is correct
21 Correct 2 ms 868 KB Output is correct
22 Correct 3 ms 868 KB Output is correct
23 Correct 3 ms 868 KB Output is correct
24 Correct 3 ms 916 KB Output is correct
25 Correct 3 ms 916 KB Output is correct
26 Correct 3 ms 916 KB Output is correct
27 Correct 4 ms 916 KB Output is correct
28 Correct 3 ms 916 KB Output is correct
29 Correct 2 ms 916 KB Output is correct
30 Correct 2 ms 916 KB Output is correct
31 Correct 2 ms 916 KB Output is correct
32 Correct 2 ms 916 KB Output is correct
33 Correct 2 ms 1004 KB Output is correct
34 Correct 2 ms 1076 KB Output is correct
35 Correct 3 ms 1076 KB Output is correct
36 Correct 2 ms 1076 KB Output is correct
37 Correct 4 ms 1076 KB Output is correct
38 Correct 2 ms 1076 KB Output is correct
39 Correct 3 ms 1076 KB Output is correct
40 Correct 2 ms 1076 KB Output is correct
41 Correct 3 ms 1076 KB Output is correct
42 Correct 3 ms 1076 KB Output is correct
43 Correct 3 ms 1076 KB Output is correct
44 Correct 2 ms 1076 KB Output is correct
45 Correct 3 ms 1184 KB Output is correct
46 Correct 2 ms 1184 KB Output is correct
47 Correct 2 ms 1184 KB Output is correct
48 Correct 2 ms 1184 KB Output is correct
49 Correct 2 ms 1184 KB Output is correct
50 Correct 3 ms 1184 KB Output is correct
51 Correct 2 ms 1184 KB Output is correct
52 Correct 2 ms 1240 KB Output is correct
53 Correct 3 ms 1240 KB Output is correct
54 Correct 2 ms 1240 KB Output is correct
55 Correct 3 ms 1240 KB Output is correct
56 Correct 2 ms 1276 KB Output is correct
57 Correct 2 ms 1276 KB Output is correct
58 Correct 2 ms 1276 KB Output is correct
59 Correct 2 ms 1440 KB Output is correct
60 Correct 2 ms 1440 KB Output is correct
61 Correct 2 ms 1440 KB Output is correct
62 Correct 2 ms 1440 KB Output is correct
63 Correct 2 ms 1440 KB Output is correct
64 Correct 3 ms 1440 KB Output is correct
65 Correct 3 ms 1440 KB Output is correct
66 Correct 2 ms 1440 KB Output is correct
67 Correct 2 ms 1440 KB Output is correct
68 Correct 3 ms 1440 KB Output is correct
69 Correct 3 ms 1440 KB Output is correct
70 Correct 2 ms 1440 KB Output is correct
71 Correct 3 ms 1440 KB Output is correct
72 Correct 3 ms 1440 KB Output is correct
73 Correct 3 ms 1440 KB Output is correct
74 Correct 3 ms 1440 KB Output is correct
75 Correct 4 ms 1440 KB Output is correct
76 Correct 3 ms 1440 KB Output is correct
77 Correct 3 ms 1440 KB Output is correct
78 Correct 3 ms 1440 KB Output is correct
79 Correct 4 ms 1440 KB Output is correct
80 Correct 2 ms 1440 KB Output is correct
81 Correct 3 ms 1440 KB Output is correct
82 Correct 3 ms 1440 KB Output is correct
83 Correct 3 ms 1440 KB Output is correct
84 Correct 3 ms 1440 KB Output is correct
85 Correct 3 ms 1452 KB Output is correct
86 Correct 2 ms 1452 KB Output is correct
87 Correct 3 ms 1452 KB Output is correct
88 Correct 3 ms 1452 KB Output is correct
89 Correct 3 ms 1452 KB Output is correct
90 Correct 3 ms 1452 KB Output is correct
91 Correct 2 ms 1468 KB Output is correct
92 Correct 3 ms 1472 KB Output is correct