Submission #703813

# Submission time Handle Problem Language Result Execution time Memory
703813 2023-02-28T12:47:09 Z LittleCube Naan (JOI19_naan) C++14
29 / 100
201 ms 53916 KB
#include <bits/stdc++.h>
#define int long long
#define ll long long
#define pii pair<int, int>
#define F first
#define S second
using namespace std;

const bool LittleCubeIsBurningChicken = true;

mt19937 rd(chrono::steady_clock::now().time_since_epoch().count());

ll N, L, v[2005][2005], sum[2005];
bool vis[2005];
pii d[2005][2005];

int abtodc(int a, int b, int c)
{
    return (b * c + a - 1) / a;
}

signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0), cout.tie(0);
    cin >> N >> L;
    // why divide by N?
    // how to solve using only fractions? -> we can discard leftovers (things cannot be converted to current fraction) from last person
    // is it guarnteed to always have a solution? -> yes (at least for N <= 6)
    // why?
    for (int i = 1; i <= N; i++)
    {
        for (int j = 1; j <= L; j++)
        {
            cin >> v[i][j];
            // sum >= sum of v / N
            // sum * N >= sum of v
            sum[i] += v[i][j];
            v[i][j] *= N;
        }
    }
    for (int i = 1; i <= N; i++)
    {
        pii last = {0, 1};
        int nxt = 1;
        for (int j = 1; j <= N; j++)
        {
            ll tmp = sum[i];
            while (nxt < L && tmp >= v[i][nxt] - abtodc(last.S, last.F, v[i][nxt]))
                tmp -= v[i][nxt] - abtodc(last.S, last.F, v[i][nxt]), last = {0, 1}, nxt++;
            last = {abtodc(last.S, last.F, v[i][nxt]), v[i][nxt]};
            last.F += tmp;
            d[i][j] = pii(last.F + (nxt - 1) * last.S, last.S);
        }
    }
    vector<int> p;
    for (int i = 1; i <= N; i++)
    {
        pii cur = {1e9, 1};
        int nxt = 0;
        for (int j = 1; j <= N; j++)
            if (!vis[j] && d[j][i].F * cur.S < d[j][i].S * cur.F)
                nxt = j, cur = d[j][i];
        vis[nxt] = 1;
        if(i < N)
            cout << cur.F << ' ' << cur.S << '\n';
        p.emplace_back(nxt);
    }
    for (int i = 0; i < N; i++)
        cout << p[i] << " \n"[i == N - 1];
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 0 ms 340 KB Output is correct
6 Correct 0 ms 340 KB Output is correct
7 Correct 0 ms 340 KB Output is correct
8 Correct 0 ms 340 KB Output is correct
9 Correct 0 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 468 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 1 ms 468 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 1 ms 468 KB Output is correct
17 Correct 1 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 440 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 468 KB Output is correct
22 Correct 1 ms 468 KB Output is correct
23 Correct 0 ms 340 KB Output is correct
24 Correct 1 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 340 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 0 ms 340 KB Output is correct
6 Correct 0 ms 340 KB Output is correct
7 Correct 0 ms 340 KB Output is correct
8 Correct 0 ms 340 KB Output is correct
9 Correct 0 ms 340 KB Output is correct
10 Correct 1 ms 340 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 340 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 340 KB Output is correct
18 Correct 1 ms 340 KB Output is correct
19 Correct 1 ms 468 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 1 ms 340 KB Output is correct
22 Correct 1 ms 340 KB Output is correct
23 Correct 1 ms 340 KB Output is correct
24 Correct 1 ms 468 KB Output is correct
25 Correct 1 ms 468 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 1 ms 340 KB Output is correct
28 Correct 1 ms 340 KB Output is correct
29 Correct 1 ms 468 KB Output is correct
30 Correct 2 ms 468 KB Output is correct
31 Correct 1 ms 468 KB Output is correct
32 Correct 1 ms 468 KB Output is correct
33 Correct 1 ms 468 KB Output is correct
34 Correct 1 ms 440 KB Output is correct
35 Correct 1 ms 340 KB Output is correct
36 Correct 1 ms 468 KB Output is correct
37 Correct 1 ms 468 KB Output is correct
38 Correct 0 ms 340 KB Output is correct
39 Correct 1 ms 340 KB Output is correct
40 Correct 1 ms 340 KB Output is correct
41 Correct 1 ms 340 KB Output is correct
42 Correct 1 ms 340 KB Output is correct
43 Correct 28 ms 11876 KB Output is correct
44 Incorrect 201 ms 53916 KB X_i is not increasing
45 Halted 0 ms 0 KB -