Submission #70258

# Submission time Handle Problem Language Result Execution time Memory
70258 2018-08-22T14:18:24 Z funcsr Koala Game (APIO17_koala) C++17
96 / 100
522 ms 1156 KB
#include "koala.h"
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cmath>
#include <iomanip>
#include <cassert>
#include <bitset>
using namespace std;

typedef pair<int, int> P;
#define rep(i, n) for (int i=0; i<(n); i++)
#define all(c) (c).begin(), (c).end()
#define uniq(c) c.erase(unique(all(c)), (c).end())
#define index(xs, x) (int)(lower_bound(all(xs), x) - xs.begin())
#define _1 first
#define _2 second
#define pb push_back
#define INF 1145141919
#define MOD 1000000007

int N, W;
tuple<int,int,int> dp[201];
int simulation(vector<int> cost, int l, int r) {
  rep(i, W+1) dp[i] = make_tuple(0, 0, 0);
  rep(i, N) {
    assert(cost[i] > 0);
    for (int j=W-cost[i]; j>=0; j--) {
      dp[j+cost[i]] = max(dp[j+cost[i]], make_tuple(get<0>(dp[j])+(i+1), get<1>(dp[j])+1, get<2>(dp[j])-(l<=i+1&&i+1<=r)));
    }
  }
  return -get<2>(dp[W]);
}

int perm[100];
void solve(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) {
    perm[set[0]] = l;
    return;
  }
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) break;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int left = simulation(cost, l, r);
      int right = (r-l+1)-left;
      if (left==0||right==0)continue;
      mp = min(mp, make_pair(abs(left-right), P(k, outside)));
      if (mp._1 <= 1) break;
    }
    if (mp._1 <= 1) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }

  solve(l, l+left.size()-1, left);
  solve(l+left.size(), r, right);
}
int solve2(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) return set[0];
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) break;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int right = simulation(cost, l, r);
      int left = (r-l+1)-right;
      if (right==0) continue;
      mp = min(mp, make_pair(right, P(k, outside)));
      if (mp._1 <= 1) break;
    }
    if (mp._1 <= 1) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }
  return solve2(l+left.size(), r, right);
}

int minValue(int N, int W) {
  int B[N], R[N];
  rep(i, N) B[i] = 0;
  B[0] = 1;
  playRound(B, R);
  rep(i, N) if (R[i] <= B[i]) return i;
  abort();
}

int maxValue(int NN, int WW) {
  N = NN, W = WW;
  vector<int> left, right;
  vector<int> all;
  rep(i, N) all.pb(i);
  return solve2(1, N, all);
}

int cmp(int w) {
  int B[N], R[N];
  rep(i, N) B[i] = 0;
  B[0] = w;
  B[1] = w;
  playRound(B, R);
  if (R[0]>=w+1&&R[1]>=w+1) return -1;
  if (R[0] >= w+1) return 0;
  if (R[1] >= w+1) return 1;
  return -2;
}
int greaterValue(int NN, int WW) {
  N = NN, W = WW;
  int lo = 1, hi = min(N, 8);
  while (hi-lo >= 1) {
    int mid = (lo+hi)/2;
    int x = cmp(mid);
    if (x>=0) return x;
    if (x==-1) lo = mid+1;
    if (x==-2) hi = mid-1;
  }
  int x = cmp(hi);
  assert(x>=0);
  return x;
}


void allValues(int NN, int WW, int *P) {
  N = NN, W = WW;
  vector<int> left, right;
  rep(i, N) perm[i] = -1;
  vector<int> all;
  rep(i, N) all.pb(i);
  solve(1, N, all);
  rep(i, N) P[i] = perm[i];
}

Compilation message

In file included from /usr/include/c++/7/cassert:44:0,
                 from koala.cpp:13:
koala.cpp: In function 'void solve(int, int, std::vector<int>)':
koala.cpp:43:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
koala.cpp: In function 'int solve2(int, int, std::vector<int>)':
koala.cpp:87:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
koala.cpp:102:11: warning: unused variable 'left' [-Wunused-variable]
       int left = (r-l+1)-right;
           ^~~~
# Verdict Execution time Memory Grader output
1 Correct 9 ms 376 KB Output is correct
2 Correct 8 ms 376 KB Output is correct
3 Correct 8 ms 536 KB Output is correct
4 Correct 6 ms 632 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 433 ms 712 KB Output is correct
2 Correct 522 ms 712 KB Output is correct
3 Correct 449 ms 768 KB Output is correct
4 Correct 430 ms 784 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 89 ms 784 KB Output is partially correct
2 Partially correct 98 ms 1056 KB Output is partially correct
3 Partially correct 88 ms 1056 KB Output is partially correct
4 Partially correct 81 ms 1076 KB Output is partially correct
5 Partially correct 84 ms 1076 KB Output is partially correct
6 Partially correct 81 ms 1076 KB Output is partially correct
7 Partially correct 77 ms 1076 KB Output is partially correct
8 Partially correct 76 ms 1076 KB Output is partially correct
9 Partially correct 76 ms 1076 KB Output is partially correct
10 Partially correct 70 ms 1076 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Correct 347 ms 1076 KB Output is correct
2 Correct 365 ms 1076 KB Output is correct
3 Correct 349 ms 1076 KB Output is correct
4 Correct 338 ms 1076 KB Output is correct
5 Correct 344 ms 1156 KB Output is correct
6 Correct 321 ms 1156 KB Output is correct
7 Correct 288 ms 1156 KB Output is correct
8 Correct 285 ms 1156 KB Output is correct
9 Correct 311 ms 1156 KB Output is correct
10 Correct 348 ms 1156 KB Output is correct
11 Correct 306 ms 1156 KB Output is correct
12 Correct 279 ms 1156 KB Output is correct
13 Correct 296 ms 1156 KB Output is correct
14 Correct 322 ms 1156 KB Output is correct
15 Correct 308 ms 1156 KB Output is correct
16 Correct 317 ms 1156 KB Output is correct
17 Correct 327 ms 1156 KB Output is correct
18 Correct 321 ms 1156 KB Output is correct
19 Correct 324 ms 1156 KB Output is correct
20 Correct 325 ms 1156 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 27 ms 1156 KB Output is correct
2 Correct 26 ms 1156 KB Output is correct
3 Correct 25 ms 1156 KB Output is correct
4 Correct 22 ms 1156 KB Output is correct
5 Correct 22 ms 1156 KB Output is correct
6 Correct 25 ms 1156 KB Output is correct
7 Correct 21 ms 1156 KB Output is correct
8 Correct 21 ms 1156 KB Output is correct
9 Correct 28 ms 1156 KB Output is correct
10 Correct 26 ms 1156 KB Output is correct
11 Correct 31 ms 1156 KB Output is correct
12 Correct 21 ms 1156 KB Output is correct
13 Correct 20 ms 1156 KB Output is correct
14 Correct 23 ms 1156 KB Output is correct
15 Correct 25 ms 1156 KB Output is correct
16 Correct 21 ms 1156 KB Output is correct
17 Correct 24 ms 1156 KB Output is correct
18 Correct 25 ms 1156 KB Output is correct
19 Correct 24 ms 1156 KB Output is correct
20 Correct 21 ms 1156 KB Output is correct
21 Correct 23 ms 1156 KB Output is correct
22 Correct 27 ms 1156 KB Output is correct
23 Correct 24 ms 1156 KB Output is correct
24 Correct 27 ms 1156 KB Output is correct
25 Correct 22 ms 1156 KB Output is correct
26 Correct 26 ms 1156 KB Output is correct
27 Correct 25 ms 1156 KB Output is correct
28 Correct 23 ms 1156 KB Output is correct
29 Correct 23 ms 1156 KB Output is correct
30 Correct 25 ms 1156 KB Output is correct
31 Correct 26 ms 1156 KB Output is correct
32 Correct 21 ms 1156 KB Output is correct
33 Correct 30 ms 1156 KB Output is correct
34 Correct 24 ms 1156 KB Output is correct
35 Correct 26 ms 1156 KB Output is correct
36 Correct 35 ms 1156 KB Output is correct
37 Correct 25 ms 1156 KB Output is correct
38 Correct 23 ms 1156 KB Output is correct
39 Correct 25 ms 1156 KB Output is correct
40 Correct 24 ms 1156 KB Output is correct