Submission #70238

# Submission time Handle Problem Language Result Execution time Memory
70238 2018-08-22T14:01:18 Z funcsr Koala Game (APIO17_koala) C++17
82 / 100
524 ms 1208 KB
#include "koala.h"
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cmath>
#include <iomanip>
#include <cassert>
#include <bitset>
using namespace std;

typedef pair<int, int> P;
#define rep(i, n) for (int i=0; i<(n); i++)
#define all(c) (c).begin(), (c).end()
#define uniq(c) c.erase(unique(all(c)), (c).end())
#define index(xs, x) (int)(lower_bound(all(xs), x) - xs.begin())
#define _1 first
#define _2 second
#define pb push_back
#define INF 1145141919
#define MOD 1000000007

int N, W;
tuple<int,int,int> dp[201];
int simulation(vector<int> cost, int l, int r) {
  rep(i, W+1) dp[i] = make_tuple(0, 0, 0);
  rep(i, N) {
    assert(cost[i] > 0);
    for (int j=W-cost[i]; j>=0; j--) {
      dp[j+cost[i]] = max(dp[j+cost[i]], make_tuple(get<0>(dp[j])+(i+1), get<1>(dp[j])+1, get<2>(dp[j])-(l<=i+1&&i+1<=r)));
    }
  }
  return -get<2>(dp[W]);
}

int perm[100];
void solve(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) {
    perm[set[0]] = l;
    return;
  }
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) break;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int left = simulation(cost, l, r);
      int right = (r-l+1)-left;
      if (left==0||right==0)continue;
      mp = min(mp, make_pair(abs(left-right), P(k, outside)));
      if (mp._1 <= 1) break;
    }
    if (mp._1 <= 1) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }

  solve(l, l+left.size()-1, left);
  solve(l+left.size(), r, right);
}
int solve2(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) return set[0];
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) break;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int right = simulation(cost, l, r);
      int left = (r-l+1)-right;
      if (right==0) continue;
      mp = min(mp, make_pair(right, P(k, outside)));
      if (mp._1 <= 1) break;
    }
    if (mp._1 <= 1) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }
  return solve2(l+left.size(), r, right);
}

int minValue(int N, int W) {
  int B[N], R[N];
  rep(i, N) B[i] = 0;
  B[0] = 1;
  playRound(B, R);
  rep(i, N) if (R[i] <= B[i]) return i;
  abort();
}

int maxValue(int NN, int WW) {
  N = NN, W = WW;
  vector<int> left, right;
  vector<int> all;
  rep(i, N) all.pb(i);
  return solve2(1, N, all);
}

int greaterValue(int N, int W) {
  int B[N], R[N];
  rep(i, N) B[i] = 0;
  B[0] = 1;
  B[1] = 1;
  playRound(B, R);
  if (R[0] >= 2) return 0;
  if (R[1] >= 2) return 1;
  abort();
}


void allValues(int NN, int WW, int *P) {
  N = NN, W = WW;
  vector<int> left, right;
  rep(i, N) perm[i] = -1;
  vector<int> all;
  rep(i, N) all.pb(i);
  solve(1, N, all);
  rep(i, N) P[i] = perm[i];
}

Compilation message

In file included from /usr/include/c++/7/cassert:44:0,
                 from koala.cpp:13:
koala.cpp: In function 'void solve(int, int, std::vector<int>)':
koala.cpp:43:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
koala.cpp: In function 'int solve2(int, int, std::vector<int>)':
koala.cpp:87:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
koala.cpp:102:11: warning: unused variable 'left' [-Wunused-variable]
       int left = (r-l+1)-right;
           ^~~~
# Verdict Execution time Memory Grader output
1 Correct 8 ms 376 KB Output is correct
2 Correct 9 ms 520 KB Output is correct
3 Correct 9 ms 528 KB Output is correct
4 Correct 9 ms 540 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 524 ms 656 KB Output is correct
2 Correct 496 ms 784 KB Output is correct
3 Correct 483 ms 928 KB Output is correct
4 Correct 471 ms 944 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 944 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 326 ms 948 KB Output is correct
2 Correct 353 ms 948 KB Output is correct
3 Correct 313 ms 1064 KB Output is correct
4 Correct 314 ms 1076 KB Output is correct
5 Correct 343 ms 1076 KB Output is correct
6 Correct 382 ms 1076 KB Output is correct
7 Correct 452 ms 1076 KB Output is correct
8 Correct 428 ms 1076 KB Output is correct
9 Correct 347 ms 1208 KB Output is correct
10 Correct 324 ms 1208 KB Output is correct
11 Correct 358 ms 1208 KB Output is correct
12 Correct 327 ms 1208 KB Output is correct
13 Correct 323 ms 1208 KB Output is correct
14 Correct 366 ms 1208 KB Output is correct
15 Correct 360 ms 1208 KB Output is correct
16 Correct 290 ms 1208 KB Output is correct
17 Correct 333 ms 1208 KB Output is correct
18 Correct 301 ms 1208 KB Output is correct
19 Correct 322 ms 1208 KB Output is correct
20 Correct 315 ms 1208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 23 ms 1208 KB Output is correct
2 Correct 22 ms 1208 KB Output is correct
3 Correct 21 ms 1208 KB Output is correct
4 Correct 27 ms 1208 KB Output is correct
5 Correct 25 ms 1208 KB Output is correct
6 Correct 22 ms 1208 KB Output is correct
7 Correct 22 ms 1208 KB Output is correct
8 Correct 31 ms 1208 KB Output is correct
9 Correct 24 ms 1208 KB Output is correct
10 Correct 22 ms 1208 KB Output is correct
11 Correct 21 ms 1208 KB Output is correct
12 Correct 27 ms 1208 KB Output is correct
13 Correct 27 ms 1208 KB Output is correct
14 Correct 23 ms 1208 KB Output is correct
15 Correct 23 ms 1208 KB Output is correct
16 Correct 22 ms 1208 KB Output is correct
17 Correct 25 ms 1208 KB Output is correct
18 Correct 28 ms 1208 KB Output is correct
19 Correct 39 ms 1208 KB Output is correct
20 Correct 21 ms 1208 KB Output is correct
21 Correct 22 ms 1208 KB Output is correct
22 Correct 22 ms 1208 KB Output is correct
23 Correct 21 ms 1208 KB Output is correct
24 Correct 21 ms 1208 KB Output is correct
25 Correct 24 ms 1208 KB Output is correct
26 Correct 26 ms 1208 KB Output is correct
27 Correct 22 ms 1208 KB Output is correct
28 Correct 26 ms 1208 KB Output is correct
29 Correct 26 ms 1208 KB Output is correct
30 Correct 31 ms 1208 KB Output is correct
31 Correct 24 ms 1208 KB Output is correct
32 Correct 25 ms 1208 KB Output is correct
33 Correct 26 ms 1208 KB Output is correct
34 Correct 27 ms 1208 KB Output is correct
35 Correct 31 ms 1208 KB Output is correct
36 Correct 27 ms 1208 KB Output is correct
37 Correct 26 ms 1208 KB Output is correct
38 Correct 23 ms 1208 KB Output is correct
39 Correct 23 ms 1208 KB Output is correct
40 Correct 26 ms 1208 KB Output is correct