Submission #70193

# Submission time Handle Problem Language Result Execution time Memory
70193 2018-08-22T13:11:20 Z funcsr Koala Game (APIO17_koala) C++17
57 / 100
1000 ms 936 KB
#include "koala.h"
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cmath>
#include <iomanip>
#include <cassert>
#include <bitset>
using namespace std;

typedef pair<int, int> P;
#define rep(i, n) for (int i=0; i<(n); i++)
#define all(c) (c).begin(), (c).end()
#define uniq(c) c.erase(unique(all(c)), (c).end())
#define index(xs, x) (int)(lower_bound(all(xs), x) - xs.begin())
#define _1 first
#define _2 second
#define pb push_back
#define INF 1145141919
#define MOD 1000000007

int N, W;
tuple<int,int,int> dp[201];
int simulation(vector<int> cost, int l, int r) {
  rep(i, W+1) dp[i] = make_tuple(0, 0, 0);
  rep(i, N) {
    assert(cost[i] > 0);
    for (int j=W-cost[i]; j>=0; j--) {
      dp[j+cost[i]] = max(dp[j+cost[i]], make_tuple(get<0>(dp[j])+(i+1), get<1>(dp[j])+1, get<2>(dp[j])-(l<=i+1&&i+1<=r)));
    }
  }
  int lo = -get<2>(dp[W]);
  rep(i, W+1) dp[i] = make_tuple(0, 0, 0);
  rep(i, N) {
    assert(cost[i] > 0);
    for (int j=W-cost[i]; j>=0; j--) {
      dp[j+cost[i]] = max(dp[j+cost[i]], make_tuple(get<0>(dp[j])+(i+1), get<1>(dp[j])+1, get<2>(dp[j])+(l<=i+1&&i+1<=r)));
    }
  }
  int hi = get<2>(dp[W]);
  assert(lo==hi);
  return lo;
}

int perm[100];
void solve(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) {
    perm[set[0]] = l;
    return;
  }
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) continue;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int left = simulation(cost, l, r);
      int right = (r-l+1)-left;
      if (left==0||right==0)continue;
      mp = min(mp, make_pair(abs(left-right), P(k, outside)));
      if (mp._1 == 0) break;
    }
    if (mp._1 == 0) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }

  solve(l, l+left.size()-1, left);
  solve(l+left.size(), r, right);
}
int solve2(int l, int r, vector<int> set) {
  assert(r-l+1 == set.size());
  assert(l<=r);
  //cout<<"["<<l<<","<<r<<"] {";for(int x: set)cout<<x<<",";cout<<"}\n";
  if (l == r) return set[0];
  pair<int, P> mp = make_pair(INF, P(-1, -1));

  for (int outside=1; outside<=100; outside++) {
    for (int k=2; k<=100; k++) {
      if ((outside-1)*(N-(r-l+1)) + (k-1)*(r-l+1) > W) continue;
      vector<int> cost(N);
      for (int i=1; i<=N; i++) {
        if (l <= i && i <= r) cost[i-1] = k;
        else cost[i-1] = outside;
      }
      int left = simulation(cost, l, r);
      int right = (r-l+1)-left;
      if (right==0)continue;
      mp = min(mp, make_pair(right, P(k, outside)));
      if (mp._1 == 0) break;
    }
    if (mp._1 == 0) break;
  }
  int val = mp._2._1;
  int outside = mp._2._2;
  //cout<<"val="<<val<<", outside="<<outside<<": "<<mp._1<<"\n";
  assert(val!=-1);

  int B[100], R[100];
  rep(i, N) B[i] = outside-1;
  for (int i : set) B[i] = val-1;
  playRound(B, R);
  vector<int> left, right;
  for (int i : set) {
    if (R[i] >= val) right.pb(i);
    else left.pb(i);
  }
  return solve2(l+left.size(), r, right);
}

int minValue(int N, int W) {
  int B[N], R[N];
  rep(i, N) B[i] = 0;
  B[0] = 1;
  playRound(B, R);
  rep(i, N) if (R[i] <= B[i]) return i;
  abort();
}

int maxValue(int NN, int WW) {
  N = NN, W = WW;
  vector<int> left, right;
  rep(i, N) perm[i] = -1;
  vector<int> all;
  rep(i, N) all.pb(i);
  return solve2(1, N, all);
}

int greaterValue(int N, int W) {
  return 0;
}


void allValues(int NN, int WW, int *P) {
  N = NN, W = WW;
  vector<int> left, right;
  rep(i, N) perm[i] = -1;
  vector<int> all;
  rep(i, N) all.pb(i);
  solve(1, N, all);
  rep(i, N) P[i] = perm[i];
}

Compilation message

In file included from /usr/include/c++/7/cassert:44:0,
                 from koala.cpp:13:
koala.cpp: In function 'void solve(int, int, std::vector<int>)':
koala.cpp:53:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
koala.cpp: In function 'int solve2(int, int, std::vector<int>)':
koala.cpp:97:16: warning: comparison between signed and unsigned integer expressions [-Wsign-compare]
   assert(r-l+1 == set.size());
          ~~~~~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 7 ms 376 KB Output is correct
2 Correct 8 ms 452 KB Output is correct
3 Correct 7 ms 452 KB Output is correct
4 Correct 8 ms 480 KB Output is correct
# Verdict Execution time Memory Grader output
1 Incorrect 21 ms 548 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 2 ms 572 KB Output isn't correct
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 803 ms 748 KB Output is correct
2 Correct 852 ms 748 KB Output is correct
3 Correct 765 ms 808 KB Output is correct
4 Correct 856 ms 808 KB Output is correct
5 Correct 834 ms 808 KB Output is correct
6 Correct 826 ms 808 KB Output is correct
7 Correct 780 ms 916 KB Output is correct
8 Correct 849 ms 916 KB Output is correct
9 Correct 808 ms 916 KB Output is correct
10 Correct 810 ms 916 KB Output is correct
11 Correct 820 ms 916 KB Output is correct
12 Correct 866 ms 916 KB Output is correct
13 Correct 923 ms 916 KB Output is correct
14 Correct 857 ms 916 KB Output is correct
15 Correct 860 ms 916 KB Output is correct
16 Correct 731 ms 916 KB Output is correct
17 Execution timed out 1052 ms 936 KB Time limit exceeded
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 96 ms 936 KB Output is correct
2 Correct 94 ms 936 KB Output is correct
3 Correct 89 ms 936 KB Output is correct
4 Correct 87 ms 936 KB Output is correct
5 Correct 104 ms 936 KB Output is correct
6 Correct 95 ms 936 KB Output is correct
7 Correct 100 ms 936 KB Output is correct
8 Correct 92 ms 936 KB Output is correct
9 Correct 84 ms 936 KB Output is correct
10 Correct 101 ms 936 KB Output is correct
11 Correct 96 ms 936 KB Output is correct
12 Correct 147 ms 936 KB Output is correct
13 Correct 106 ms 936 KB Output is correct
14 Correct 103 ms 936 KB Output is correct
15 Correct 105 ms 936 KB Output is correct
16 Correct 109 ms 936 KB Output is correct
17 Correct 91 ms 936 KB Output is correct
18 Correct 86 ms 936 KB Output is correct
19 Correct 96 ms 936 KB Output is correct
20 Correct 98 ms 936 KB Output is correct
21 Correct 84 ms 936 KB Output is correct
22 Correct 90 ms 936 KB Output is correct
23 Correct 112 ms 936 KB Output is correct
24 Correct 86 ms 936 KB Output is correct
25 Correct 94 ms 936 KB Output is correct
26 Correct 98 ms 936 KB Output is correct
27 Correct 93 ms 936 KB Output is correct
28 Correct 102 ms 936 KB Output is correct
29 Correct 142 ms 936 KB Output is correct
30 Correct 98 ms 936 KB Output is correct
31 Correct 112 ms 936 KB Output is correct
32 Correct 94 ms 936 KB Output is correct
33 Correct 102 ms 936 KB Output is correct
34 Correct 104 ms 936 KB Output is correct
35 Correct 88 ms 936 KB Output is correct
36 Correct 96 ms 936 KB Output is correct
37 Correct 110 ms 936 KB Output is correct
38 Correct 87 ms 936 KB Output is correct
39 Correct 86 ms 936 KB Output is correct
40 Correct 92 ms 936 KB Output is correct