#include<bits/stdc++.h>
#include<iostream>
#include<stdlib.h>
#include<cmath>
#include <algorithm>
#include<numeric>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<pair<int, int> > vpii;
typedef pair<ll, ll> pll;
typedef vector<pll> vpll;
typedef vector<ll> vll;
#define FOR(i,a,b) for (int i = (a); i < (b); ++i)
#define trav(a,x) for (auto& a: x)
#define fr(i, a, b, s) for (int i=(a); (s)>0?i<(b):i>=(b); i+=(s))
#define fr1(e) fr(i, 0, e, 1)
#define fr2(i, e) fr(i, 0, e, 1)
#define fr3(i, b, e) fr(i, b, e, 1)
#define mp make_pair
#define pb push_back
#define sz(x) int(x.size())
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define in insert
#define yes cout<<"YES\n"
#define no cout<<"NO\n"
#define out(x) cout<<x<<'\n'
int dx[4] = { -1, 0, 1, 0 };
int dy[4] = { 0, 1, 0, -1 };
double pi = 3.141592;
ll mod = 1e9 + 7;
void xd(string str)
{
ios_base::sync_with_stdio(0); cin.tie(0);
if (str != "")
{
//freopen((str + ".in").c_str(), "r", stdin);
//freopen((str + ".out").c_str(), "w", stdout);
}
}
int add(int a, int b, int mod) { return (((a % mod) + (b % mod)) + mod) % mod; }
int sub(int a, int b, int mod) { return (((a % mod) - (b % mod)) + mod) % mod; }
int mul(int a, int b, int mod) { return (((a % mod) * (b % mod)) + mod) % mod; }
int bin(int a, int b, int mod) { int ans = 1; while (b) { if (b & 1) ans = mul(ans, a, mod); a = mul(a, a, mod); b >>= 1; }return ans; }
int inverse(int a, int mod) { return bin(a, mod - 2, mod); }
int divi(int a, int b, int mod) {
return mul(a, inverse(b, mod), mod);
}
ll add(ll a, ll b, ll mod) { return (((a % mod) + (b % mod)) + mod) % mod; }
ll sub(ll a, ll b, ll mod) { return (((a % mod) - (b % mod)) + mod) % mod; }
ll mul(ll a, ll b, ll mod) { return (((a % mod) * (b % mod)) + mod) % mod; }
ll bin(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1) ans = mul(ans, a, mod); a = mul(a, a, mod); b >>= 1; }return ans; }
ll inverse(ll a, ll mod) { return bin(a, mod - 2, mod); }
ll divi(ll a, ll b, ll mod) {
return mul(a, inverse(b, mod), mod);
}
ll ex(int base, int power)
{
if (power == 0)
return 1;
ll result = ex(base, power / 2);
if (power % 2 == 1)
return(((result * result) % mod) * base) % mod;
else return (result * result) % mod;
}
int gcd(int a, int b) {
if (b == 0)return a;
else return gcd(b, a % b);
}
int lcm(int a, int b) {
return a * b / gcd(a, b);
}
ll fac(int x) {
ll factorial = 1;
for (ll i = 1; i <= x; ++i) {
factorial = mul(factorial, i, mod);
}
return factorial % mod;
}
ll npr(int x, int c) {
if (x < c) return 0;
if (x == c) return fac(x);
else return (fac(x) / (fac(x - c)));
}
ll ncr(int x, int c) {
if (x < c) return 0;
if (x == c) return 1;
else return (fac(x) / ((fac(x - c) * fac(c))));
}
void bton(string s) { stoll(s, nullptr, 2); }
inline int read() {
int x = 0, f = 1, c = getchar();
while (!isdigit(c)) { if (c == '-')f = -1; c = getchar(); }
while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); }
return f == 1 ? x : -x;
}
bool isPrime(int n)
{
if (n == 2 || n == 3)
return true;
if (n <= 1 || n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
int ceil_int(int first_number, int divider) {
if (first_number % divider == 0) return first_number / divider;
else return first_number / divider + 1;
}
ll ceil_ll(ll first_number, ll divider) {
if (first_number % divider == 0) return first_number / divider;
else return first_number / divider + 1LL;
}
vector<int> smallest_factor;
vector<bool> prime;
vector<int> primes;
// Note: this sieve is O(n), but the constant factor is worse than the O(n log log n) sieve due to the multiplication.
void sieve(int maximum) {
maximum = max(maximum, 1);
smallest_factor.assign(maximum + 1, 0);
prime.assign(maximum + 1, true);
prime[0] = prime[1] = false;
primes = {};
for (int i = 2; i <= maximum; i++) {
if (prime[i]) {
smallest_factor[i] = i;
primes.push_back(i);
}
for (int p : primes) {
if (p > smallest_factor[i] || int64_t(i) * p > maximum)
break;
prime[i * p] = false;
smallest_factor[i * p] = p;
}
}
}
int computeXOR(int n)
{
if (n % 4 == 0)
return n;
if (n % 4 == 1)
return 1;
if (n % 4 == 2)
return n + 1;
return 0;
}
int digit_sum(int g) {
int cnt = 0;
while (g > 0) {
cnt += g % 10;
g /= 10;
}
return cnt;
}
const int maxn = 102;
vi adj[maxn];
vi vis[maxn];
void solve()
{
int n, k; cin >> n >> k;
FOR(i, 0, k) {
int u, v; cin >> u >> v;
}
ll ans = 0;
FOR(i, 0, n) {
ans += ncr(i, 2)+ ncr(n - i-1, 2);
}
cout << ans << '\n';
}
int main()
{
xd("");
int t = 1;// cin >> t;
while (t--) {
solve();
}
return 0;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
212 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
212 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1072 ms |
1408 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
30 ms |
316 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1068 ms |
1492 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
30 ms |
320 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Execution timed out |
1080 ms |
1412 KB |
Time limit exceeded |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
212 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Incorrect |
0 ms |
212 KB |
Output isn't correct |
2 |
Halted |
0 ms |
0 KB |
- |