#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 100001;
int N,K,T,mid;
vi X;
bool ok[1000][1000];
// k = 0:
// X[i-1]+t*mid
// currently at X[i]+t*mid
// X[j]-t*mid
// X[j+1]-t*mid
bool OK() {
vector<ld> x;
F0R(i,N) x.pb((ld)2*mid*T*i-X[i]);
pi L = {K,K}, R = {K,K};
bool ok = 1;
while (ok) {
ok = 0;
while (L.s && x[L.s-1] <= x[R.f]) {
ok = 1;
if (x[--L.s] < x[L.f]) L.f = L.s;
}
while (R.s < N-1 && x[L.f] <= x[R.s+1]) {
ok = 1;
if (x[++R.s] > x[R.f]) R.f = R.s;
}
}
return L.s == 0 && R.s == N-1 && x[0] <= x[N-1];
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
cin >> N >> K >> T; X.resize(N); K--;
F0R(i,N) cin >> X[i];
int lo = 0, hi = 1000000000;
while (lo < hi) {
mid = (lo+hi)/2;
if (OK()) hi = mid;
else lo = mid+1;
}
cout << lo;
}
/* Look for:
* the exact constraints (multiple sets are too slow for n=10^6 :( )
* special cases (n=1?)
* overflow (ll vs int?)
* array bounds
* if you have no idea just guess the appropriate well-known algo instead of doing nothing :/
*/
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
248 KB |
Output is correct |
2 |
Correct |
3 ms |
360 KB |
Output is correct |
3 |
Correct |
3 ms |
400 KB |
Output is correct |
4 |
Correct |
3 ms |
452 KB |
Output is correct |
5 |
Correct |
2 ms |
484 KB |
Output is correct |
6 |
Correct |
3 ms |
596 KB |
Output is correct |
7 |
Correct |
2 ms |
668 KB |
Output is correct |
8 |
Correct |
2 ms |
668 KB |
Output is correct |
9 |
Correct |
2 ms |
668 KB |
Output is correct |
10 |
Correct |
2 ms |
688 KB |
Output is correct |
11 |
Correct |
2 ms |
688 KB |
Output is correct |
12 |
Incorrect |
2 ms |
688 KB |
Output isn't correct |
13 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
248 KB |
Output is correct |
2 |
Correct |
3 ms |
360 KB |
Output is correct |
3 |
Correct |
3 ms |
400 KB |
Output is correct |
4 |
Correct |
3 ms |
452 KB |
Output is correct |
5 |
Correct |
2 ms |
484 KB |
Output is correct |
6 |
Correct |
3 ms |
596 KB |
Output is correct |
7 |
Correct |
2 ms |
668 KB |
Output is correct |
8 |
Correct |
2 ms |
668 KB |
Output is correct |
9 |
Correct |
2 ms |
668 KB |
Output is correct |
10 |
Correct |
2 ms |
688 KB |
Output is correct |
11 |
Correct |
2 ms |
688 KB |
Output is correct |
12 |
Incorrect |
2 ms |
688 KB |
Output isn't correct |
13 |
Halted |
0 ms |
0 KB |
- |
# |
결과 |
실행 시간 |
메모리 |
Grader output |
1 |
Correct |
3 ms |
248 KB |
Output is correct |
2 |
Correct |
3 ms |
360 KB |
Output is correct |
3 |
Correct |
3 ms |
400 KB |
Output is correct |
4 |
Correct |
3 ms |
452 KB |
Output is correct |
5 |
Correct |
2 ms |
484 KB |
Output is correct |
6 |
Correct |
3 ms |
596 KB |
Output is correct |
7 |
Correct |
2 ms |
668 KB |
Output is correct |
8 |
Correct |
2 ms |
668 KB |
Output is correct |
9 |
Correct |
2 ms |
668 KB |
Output is correct |
10 |
Correct |
2 ms |
688 KB |
Output is correct |
11 |
Correct |
2 ms |
688 KB |
Output is correct |
12 |
Incorrect |
2 ms |
688 KB |
Output isn't correct |
13 |
Halted |
0 ms |
0 KB |
- |